Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Section 15.7 - Triple Integrals in Cylindrical Coordinates - 15.7 Exercise - Page 1044: 27

Answer

$\dfrac{\pi a^2 K}{8}$ and $(\overline{x},\overline{y},\overline{z})=(0,0,\dfrac{2a}{3})$

Work Step by Step

Since, $m=K v$ $m=K \int_0^{2\pi} \int_{0}^{\sqrt a/2}\int_{4r^2}^{a} r dz dr d\theta=K \int_0^{2\pi} \int_{0}^{(\sqrt a/2)} (ra-4r^3) dr d\theta=\dfrac{\pi a^2 K}{8}$ As per the symmetry, we get $M_{yz}=0$ and $M_{xz}=0$ This implies that $M_{xy}=K \int_0^{2\pi} \int_{0}^{\sqrt a/2}\int_{4r^2}^{a} (zr) dz dr d\theta=K \int_0^{2\pi} (\dfrac{a^2r^2}{4}-\dfrac{4}{3}r^6)_{0}^{\sqrt a/2} dr d\theta$ and $K \int_0^{2\pi} (\dfrac{a^3}{16}-\dfrac{a^3}{48}) d\theta =\dfrac{\pi a^3 K}{12}$ The center of mass along the z-axis is given as: $\overline{z}=\dfrac{M_{xy}}{m}=\dfrac{\pi a^3K/12}{\pi a^2 K/8}=\dfrac{2a}{3}$ Therefore, the co-ordinates for the center of mass are: $(\overline{x},\overline{y},\overline{z})=(0,0,\dfrac{2a}{3})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.