Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Section 15.2 - Double Integrals over General Regions - 15.2 Exercise - Page 1009: 60

Answer

$0 \leq \iint_{T} \sin^4(x+y) dA \leq 1 $

Work Step by Step

When $m \leq f(x,y) \leq M$ on the region $S$, then we have: $m \cdot A \leq \iint_{S} f(x,y) d A \leq M \cdot A .....(1)$ and $A$ represents the area of the region $S$. The area of a triangle with base $1$ and height $2$ is given as: $A =\dfrac{1}{2} (1)(2)=1$ Since, $0 \leq \sin^4(x+y) \leq 1$ Therefore, $0 \cdot A(T) \leq \iint_{T} \sin^4(x+y) dA \leq 1 \cdot A(T) $ So, we have: $0 \leq \iint_{T} \sin^4(x+y) dA \leq 1 $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.