Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Section 15.2 - Double Integrals over General Regions - 15.2 Exercise - Page 1009: 42

Answer

$\approx 20.420$

Work Step by Step

The volume under the surface $z=f(x,y)$ and above the region $D$ in the xy-plane can be defined as: $$\ Volume =\iint_{D} f(x,y) \ dA$$ $f(x,y) =x^3y^4+xy^2$ Thus, we can express the region $D$ using the point of intersection as follows: $$D=\left\{ (x, y) | -\sqrt {1-x^2} \leq y \leq \sqrt {1-x^2}, -1 \leq x \leq 1 \right\}$$ Therefore, $\ Volume =\iint_{D} f(x,y) \ dA\\=\iint_{D} (3x^2+3y^2-8) \ dy \ dx \\= \int_{-1}^{1} \int_{-\sqrt {1-x^2}}^{\sqrt {1-x^2}} (3x^2+3y^2-8) \ dy \ dx \\ = 2 \int_0^1 (2) \int_{0}^{\sqrt {1-x^2}} (3x^2+3y^2-8) dy dx \\ = 4 \int_0^1 [3x^2 y +y^3 -8y]_{0}^{\sqrt {1-x^2}} \\= 4 \int_0^1 (2x^2 \sqrt {1-x^2} -7 \sqrt {1-x^2} ) dx $ Now, we will use a calculator to compute the integral: $\ Volume = 4 \int_0^1 (2x^2 \sqrt {1-x^2} -7 \sqrt {1-x^2} dx ) \approx 20.420$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.