Answer
$\frac{1}{4}$
Work Step by Step
We can define the region inside the circle as follows:
D = { (x,y) | 0 $\leq$ x $\leq$ 1, 0 $\leq$ y $\leq$ 1}
Therefor, $\iint_DxydA$ = $\int_0^1\int_0^1xydydx$
= $\int_0^1[\frac{xy^{2}}{2}]_0^1dx$
= $\int_0^1\frac{x}{2}dx$
= $[\frac{x^{2}}{4}]_0^1$
= $\frac{1}{4}$