Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Section 15.2 - Double Integrals over General Regions - 15.2 Exercise - Page 1009: 35

Answer

$$\dfrac{64}{3}$$

Work Step by Step

Our first step is to find the points of intersection of the parabolas $y=x^2-1$ and $y=1-x^2$ in the $xy$-plane. Now, $x^2-1=1-x^2 \implies x=\pm 1$ For any x, y in the above region, the plane $z=2-x-y$ is below the plane $z=10+2x+2y$. Therefore, the volume of the solid will be the difference of the solid below the plane $z= 10+2x+2y$ and the solid below the plane $z=2-x-y$ Therefore, $$\ Volume =\iint_{D} f(x,y) \ dA \\= \int_{-1}^{1} \int_{x^2-1}^{1-x^2} (10+2x+2y) \ dy \ dx - \int_{-1}^{1} \int_{x^2-1}^{1-x^2} (2-x-y) \ dy \ dx\\ = \int_{-1}^{1} \int_{x^2-1}^{1-x^2} (8+3x+3y) \ dy \ dx \\= \int_{-1}^{1} (8y+3xy+\dfrac{3y^2}{2})|_{x^2-1}^{1-x^2} dx \\=\int_{-1}^{1} (16-16x^2+6x -6x^3) dx\\=[16x-\dfrac{16x^3}{3}+3x^2-\dfrac{3x^4}{2}]_{-1}^{1}\\=\dfrac{64}{3}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.