Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Section 15.2 - Double Integrals over General Regions - 15.2 Exercise - Page 1009: 51

Answer

$$\dfrac{e^9-1}{6} $$

Work Step by Step

We can define the domain $D$ in the Type-II using horizontal cross-sections as follows: $ D=\left\{ (x, y) | 3y \leq x \leq 3, \ 0 \leq y \leq 1 \right\} $ Therefore, $$\iint_{D} e^{x^2} dA=\int_{0}^{1} \int_{3 y}^{3} e^{x^2} \ dx \ dy $$ and we can define the domain $D$ in the Type-1 using vertical cross-sections as follows: $ D=\left\{ (x, y) | 0 \leq y \leq x/3, \ 0 \leq x \leq 3 \right\} $ Therefore, $$\iint_{D} f(x,y) dA=\int_{0}^{3} \int_{0}^{ x/3 } e^{x^2} \ dy \ dx \\=\int_0^3 [y e^{x^2}]_0^{x/3} \ dx \\=\int_0^3 (\dfrac{x}{3}) \times e^{x^2} \ dx$$ Let us consider $a=x^2 \implies 2x dx=da$ Now, $$\int_0^3 (\dfrac{x}{3}) \times e^{x^2} \ dx=\int_0^9 \dfrac{e^a}{3} \dfrac{da}{2}\\=[\dfrac{e^a}{6}]_0^9 \\=\dfrac{e^9-1}{6} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.