Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 7 - Integration Techniques - Review Exercises - Page 594: 53

Answer

$$\frac{1}{9}\pi $$

Work Step by Step

$$\eqalign{ & \int_0^{\sqrt 3 /2} {\frac{4}{{9 + 4{x^2}}}} dx \cr & {\text{Rewrite the integrand}} \cr & \int_0^{\sqrt 3 /2} {\frac{4}{{9 + 4{x^2}}}} dx = 2\int_0^{\sqrt 3 /2} {\frac{2}{{{{\left( 3 \right)}^2} + {{\left( {2x} \right)}^2}}}} dx \cr & {\text{Let }}u = 2x,\,\,\,du = 2dx \cr & {\text{Apply the substitution}} \cr & 2\int_0^{\sqrt 3 /2} {\frac{2}{{{{\left( 3 \right)}^2} + {{\left( {2x} \right)}^2}}}} dx = 2\int_{2\left( 0 \right)}^{2\left( {\sqrt 3 /2} \right)} {\frac{{du}}{{{{\left( 3 \right)}^2} + {u^2}}}} \cr & = 2\left( {\frac{1}{3}{{\tan }^{ - 1}}\left( {\frac{u}{3}} \right)} \right)_0^{\sqrt 3 } \cr & {\text{Evaluate}} \cr & {\text{ = }}\frac{2}{3}{\tan ^{ - 1}}\left( {\frac{{\sqrt 3 }}{3}} \right) - \frac{2}{3}{\tan ^{ - 1}}\left( {\frac{0}{3}} \right) \cr & = \frac{1}{9}\pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.