Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 7 - Integration Techniques - Review Exercises - Page 594: 50

Answer

$$\frac{1}{2}\ln \left| {3x + \sqrt {9{x^2} - 25} } \right| + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{dx}}{{\sqrt {9{x^2} - 25} }}} \cr & = \int {\frac{{dx}}{{\sqrt {{{\left( {3x} \right)}^2} - {{\left( 5 \right)}^2}} }}} \cr & {\text{substitute 3}}x = 5\sec \theta ,{\text{ 2}}dx = 5\sec \theta \tan \theta d\theta \cr & = \int {\frac{{\frac{5}{2}\sec \theta \tan \theta d\theta }}{{\sqrt {{{\left( {5\sec \theta } \right)}^2} - {{\left( 5 \right)}^2}} }}} \cr & {\text{simplify}} \cr & = \frac{5}{2}\int {\frac{{\sec \theta \tan \theta d\theta }}{{\sqrt {25{{\sec }^2}\theta - 25} }}} \cr & = \frac{5}{2}\int {\frac{{\sec \theta \tan \theta d\theta }}{{5\sqrt {{{\sec }^2}\theta - 1} }}} \cr & = \frac{1}{2}\int {\frac{{\sec \theta \tan \theta d\theta }}{{\tan \theta }}} \cr & = \frac{1}{2}\int {\sec \theta } d\theta \cr & {\text{find the antiderivative}} \cr & = \frac{1}{2}\ln \left| {\sec \theta + \tan \theta } \right| + C \cr & {\text{write in terms of }}x \cr & = \frac{1}{2}\ln \left| {\frac{{3x}}{5} + \frac{{\sqrt {9{x^2} - 25} }}{5}} \right| + C \cr & \log \,\,{\text{properties}} \cr & = \frac{1}{2}\ln \left| {3x + \sqrt {9{x^2} - 25} } \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.