Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 7 - Integration Techniques - Review Exercises - Page 594: 49

Answer

$${\sin ^{ - 1}}\left( {\frac{x}{2}} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{dx}}{{\sqrt {4 - {x^2}} }}} \cr & {\text{substitute }}x = 2\sin \theta ,{\text{ }}dx = 2\cos \theta d\theta \cr & \int {\frac{{dx}}{{\sqrt {4 - {x^2}} }}} = \int {\frac{{2\cos \theta d\theta }}{{\sqrt {4 - {{\left( {2\sin \theta } \right)}^2}} }}} \cr & = \int {\frac{{2\cos \theta d\theta }}{{\sqrt {4\left( {1 - {{\sin }^2}\theta } \right)} }}} \cr & = \int {\frac{{2\cos \theta d\theta }}{{2\sqrt {{{\cos }^2}\theta } }}} \cr & = \int {d\theta } \cr & {\text{find antiderivative}} \cr & = \theta + C \cr & x = 2\sin \theta \to \theta = {\sin ^{ - 1}}\left( {\frac{x}{2}} \right) \cr & = {\sin ^{ - 1}}\left( {\frac{x}{2}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.