Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 7 - Integration Techniques - Review Exercises - Page 594: 52

Answer

$$\sqrt 3 - \frac{\pi }{3}$$

Work Step by Step

$$\eqalign{ & \int_0^{\sqrt 3 /2} {\frac{{{x^2}}}{{{{\left( {1 - {x^2}} \right)}^{3/2}}}}} dx \cr & {\text{The integrand contains the form }}{a^2} - {x^2} \cr & 1 - {x^2} \to a = 1 \cr & {\text{Use the change of variable }}x = a\sin \theta \cr & x = \sin \theta ,\,\,\,dx = \cos \theta d\theta \cr & \cr & {\text{Substituting}} \cr & \int {\frac{{{x^2}}}{{{{\left( {1 - {x^2}} \right)}^{3/2}}}}dx} = \int {\frac{{{{\sin }^2}\theta }}{{{{\left( {1 - {{\sin }^2}\theta } \right)}^{3/2}}}}\cos \theta d\theta } \cr & = \int {\frac{{{{\sin }^2}\theta }}{{{{\left( {{{\cos }^2}\theta } \right)}^{3/2}}}}\cos \theta d\theta } \cr & = \int {\frac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }}d\theta } = \int {{{\tan }^2}\theta } d\theta \cr & = \int {\left( {{{\sec }^2}\theta - 1} \right)} d\theta \cr & = \tan \theta - \theta + C \cr & {\text{Write in terms of }}x \cr & = \frac{x}{{\sqrt {1 - {x^2}} }} - {\sin ^{ - 1}}x + C \cr & {\text{Therefore,}} \cr & \int_0^{\sqrt 3 /2} {\frac{{{x^2}}}{{{{\left( {1 - {x^2}} \right)}^{3/2}}}}} dx = \left[ {\frac{x}{{\sqrt {1 - {x^2}} }} - {{\sin }^{ - 1}}x} \right]_0^{\sqrt 3 /2} \cr & = \left[ {\frac{{\sqrt 3 /2}}{{\sqrt {1 - {{\left( {\sqrt 3 /2} \right)}^2}} }} - {{\sin }^{ - 1}}\left( {\frac{{\sqrt 3 }}{2}} \right)} \right] - 0 \cr & {\text{Simplifying}} \cr & {\text{ = }}\sqrt 3 - \frac{\pi }{3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.