Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Appendix A - Appendix A Exercises - Page 1158: 26

Answer

$$\frac{1}{{\sqrt {x + h} + \sqrt x }}$$

Work Step by Step

$$\eqalign{ & \frac{{\sqrt {x + h} - \sqrt x }}{h},{\text{ for }}h \ne 0 \cr & {\text{rationalizing}} \cr & = \frac{{\sqrt {x + h} - \sqrt x }}{h} \times \frac{{\sqrt {x + h} + \sqrt x }}{{\sqrt {x + h} + \sqrt x }} \cr & = \frac{{\left( {\sqrt {x + h} - \sqrt x } \right)\left( {\sqrt {x + h} + \sqrt x } \right)}}{{h\left( {\sqrt {x + h} + \sqrt x } \right)}} \cr & {\text{use the special product }}\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2} \cr & = \frac{{{{\left( {\sqrt {x + h} } \right)}^2} - {{\left( {\sqrt x } \right)}^2}}}{{h\left( {\sqrt {x + h} + \sqrt x } \right)}} \cr & {\text{simplifying}} \cr & = \frac{{x + h - x}}{{h\left( {\sqrt {x + h} + \sqrt x } \right)}} \cr & = \frac{h}{{h\left( {\sqrt {x + h} + \sqrt x } \right)}} \cr & {\text{cancel h}} \cr & = \frac{1}{{\sqrt {x + h} + \sqrt x }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.