Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 6 - Inverse Functions - 6.4* General Logarithmic and Exponential Functions - 6.4* Exercise - Page 464: 54



Work Step by Step

Given: $x^{y}=y^{x}$ Use logarithmic properties $ln(x^{y})=ylnx$. $ylnx=xlny$ Simplify the given function using both product rule and chain rule of differentiation. $\frac{y}{x}+lnx\frac{dy}{dx}=\frac{x}{y}\frac{dy}{dx}+lny$ or $\frac{y}{x}+lnxy'=\frac{x}{y}y'+lny$ Thus, $y'=\frac{lny-\frac{y}{x}}{lnx-\frac{x}{y}}$ Hence, $y'=\frac{y(xlny-y)}{x(ylnx-x)}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.