Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 6 - Inverse Functions - 6.4* General Logarithmic and Exponential Functions - 6.4* Exercise - Page 464: 50


$\int \frac{2^{x}}{2^{x}+1}dx=\frac{1}{ln2}ln|2^{x}+1|+C$

Work Step by Step

Evaluate the integral $\int \frac{2^{x}}{2^{x}+1}dx$ Consider $2^{x}=t$ and $dx=\frac{dt}{2^{x}ln2}$ Now, $\int \frac{2^{x}}{2^{x}+1}dx=\frac{1}{ln2}\int\frac{dt}{t+1}$ $=\frac{1}{ln2}ln|t+1|+C$ Hence, $\int \frac{2^{x}}{2^{x}+1}dx=\frac{1}{ln2}ln|2^{x}+1|+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.