Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 6 - Inverse Functions - 6.4* General Logarithmic and Exponential Functions - 6.4* Exercise - Page 464: 48


$\int x2^{x^{2}}dx=\frac{1}{2}\frac {2^{x^{2}}}{ln2}+constant$

Work Step by Step

Evaluate the integral $\int x2^{x^{2}}dx$ Consider $x^{2}=t$ and $xdx=\frac{dt}{2}$ Thus, $\int x2^{x^{2}}dx=\int 2^{t}\frac{dt}{2}$ $=\frac{1}{2}\frac{2^{t}}{ln2}+constant$ Hence, $\int x2^{x^{2}}dx=\frac{1}{2}\frac {2^{x^{2}}}{ln2}+constant$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.