Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 6 - Inverse Functions - 6.4* General Logarithmic and Exponential Functions - 6.4* Exercise - Page 464: 34



Work Step by Step

If we first simplify the given function using the properties of logarithms $\frac{d}{dx}(log_{e}(x))=\frac{1}{xlne}$ Then the differentiation becomes easier: $y'=\frac{1}{(xlog_{5}x)ln2}[x\frac{d}{dx}(log_{5}x)+(log_{5}x)\frac{d}{dx}(x)$ $=\frac{1}{(xlog_{5}x)ln2}[\frac{1}{ln5}+(log_{5}x)]$ Re-arrange the above expression. $y'=\frac{ln5}{xlnxln2}[\frac{1+lnx}{ln5}]$ Hence, $y'=\frac{1+lnx}{{x(lnx)(ln2)}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.