Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 5 - The Integral - 5.3 The Indefinite Integral - Exercises - Page 253: 69

Answer

$f'(t)=\frac{t^{2}}{2}-\sin(t)+2 $ $f(t)=\frac{t^{3}}{6}+\cos(t)+2t-3 $

Work Step by Step

$$f''(t)=t-\cos(t)$$ Integrate both sides with respect to $t$: $$\int f''(t)dt=\int (t-\cos(t))dt$$ $$f'(t)=\frac{t^{2}}{2}-\sin(t)+c$$ Find $c$. $$f'(0)=\frac{0^{2}}{2}-\sin(0)+c$$ $$2=\frac{0^{2}}{2}-\sin(0)+c$$ $$2=c$$ $$f'(t)=\frac{t^{2}}{2}-\sin(t)+c \to f'(t)=\frac{t^{2}}{2}-\sin(t)+2 $$ ------------------------------------------------------------------------------ $$f'(t)=\frac{t^{2}}{2}-\sin(t)+2 $$ Integrate both sides with respect to $t$: $$\int f'(t)dt=\int (\frac{t^{2}}{2}-\sin(t)+2)dt $$ $$f(t)=\frac{t^{3}}{6}+\cos(t)+2t+k $$ Find $k$. $$f(0)=\frac{0^{3}}{6}+\cos(0)+2\cdot 0+k $$ $$-2=\frac{0^{3}}{6}+\cos(0)+2\cdot 0+k $$ $$-2=0+1+0+k $$ $$k=-3 $$ $$f(t)=\frac{t^{3}}{6}+\cos(t)+2t+k \to f(t)=\frac{t^{3}}{6}+\cos(t)+2t-3 $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.