Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 5 - The Integral - 5.3 The Indefinite Integral - Exercises - Page 253: 58



Work Step by Step

$\frac{dy}{dx}=sec^2(3x);$ $y(\frac{\pi}{4})=2$ $dy=sec^2(3x)dx$ $\int dy=\frac{1}{3}\int 3sec^2(3x)dx$ $y=\frac{1}{3}tan(3x)+C$ Substitute in the initial condition to solve for $C$ $2=\frac{1}{3}tan(\frac{3\pi}{4})+C$ $C=\frac{7}{3}$ $y=\frac{1}{3}tan(3x)+\frac{7}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.