Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.4 Parametrized Surfaces and Surface Integrals - Exercises - Page 958: 9

Answer

${{\bf{T}}_\theta }{|_{\left( {\frac{{\rm{\pi }}}{2},\frac{{\rm{\pi }}}{4}} \right)}} = \left( { - \frac{1}{2}\sqrt 2 ,0,0} \right)$ ${{\bf{T}}_\phi }{|_{\left( {\frac{{\rm{\pi }}}{2},\frac{{\rm{\pi }}}{4}} \right)}} = \left( {0,\frac{1}{2}\sqrt 2 , - \frac{1}{2}\sqrt 2 } \right)$ ${\bf{N}}\left( {\frac{{\rm{\pi }}}{2},\frac{{\rm{\pi }}}{4}} \right) = - \frac{1}{2}{\bf{j}} - \frac{1}{2}{\bf{k}}$ The equation of the tangent plane: $y + z = \sqrt 2 $

Work Step by Step

We have $G\left( {\theta ,\phi } \right) = \left( {\cos \theta \sin \phi ,\sin \theta \sin \phi ,\cos \phi } \right)$. So, ${{\bf{T}}_\theta } = \frac{{\partial G}}{{\partial \theta }} = \left( { - \sin \theta \sin \phi ,\cos \theta \sin \phi ,0} \right)$, ${\ \ \ }$ ${{\bf{T}}_\theta }{|_{\left( {\frac{{\rm{\pi }}}{2},\frac{{\rm{\pi }}}{4}} \right)}} = \left( { - \frac{1}{2}\sqrt 2 ,0,0} \right)$ ${{\bf{T}}_\phi } = \frac{{\partial G}}{{\partial \phi }} = \left( {\cos \theta \cos \phi ,\sin \theta \cos \phi , - \sin \phi } \right)$, ${\ \ \ }$ ${{\bf{T}}_\phi }{|_{\left( {\frac{{\rm{\pi }}}{2},\frac{{\rm{\pi }}}{4}} \right)}} = \left( {0,\frac{1}{2}\sqrt 2 , - \frac{1}{2}\sqrt 2 } \right)$ ${\bf{N}}\left( {\frac{{\rm{\pi }}}{2},\frac{{\rm{\pi }}}{4}} \right) = {{\bf{T}}_\theta } \times {{\bf{T}}_\phi } = \left| {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ { - \frac{1}{2}\sqrt 2 }&0&0\\ 0&{\frac{1}{2}\sqrt 2 }&{ - \frac{1}{2}\sqrt 2 } \end{array}} \right|$ ${\bf{N}}\left( {\frac{{\rm{\pi }}}{2},\frac{{\rm{\pi }}}{4}} \right) = - \frac{1}{2}{\bf{j}} - \frac{1}{2}{\bf{k}}$ The equation of the tangent plane to the surface at the point $G\left( {\frac{{\rm{\pi }}}{2},\frac{{\rm{\pi }}}{4}} \right) = \left( {0,\frac{1}{2}\sqrt 2 ,\frac{1}{2}\sqrt 2 } \right)$ is $\left( {x,y - \frac{1}{2}\sqrt 2 ,z - \frac{1}{2}\sqrt 2 } \right)\cdot\left( {0, - \frac{1}{2}, - \frac{1}{2}} \right) = 0$ $ - \frac{1}{2}\left( {y - \frac{1}{2}\sqrt 2 } \right) - \frac{1}{2}\left( {z - \frac{1}{2}\sqrt 2 } \right) = 0$ $y - \frac{1}{2}\sqrt 2 + z - \frac{1}{2}\sqrt 2 = 0$ The equation can be written as $y + z = \sqrt 2 $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.