Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.4 Parametrized Surfaces and Surface Integrals - Exercises - Page 958: 11

Answer

$\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} {\rm{d}}S \approx 0.2078$

Work Step by Step

From Exercise 8, we have $G\left( {u,v} \right) = \left( {{u^2} - {v^2},u + v,u - v} \right)$. So, $G\left( {2,3} \right) = \left( { - 5,5, - 1} \right)$ ${{\bf{T}}_u} = \frac{{\partial G}}{{\partial u}} = \left( {2u,1,1} \right)$, ${\ \ \ }$ ${{\bf{T}}_u}\left( {2,3} \right) = \left( {4,1,1} \right)$ ${{\bf{T}}_v} = \frac{{\partial G}}{{\partial v}} = \left( { - 2v,1, - 1} \right)$, ${\ \ \ }$ ${{\bf{T}}_v}\left( {2,3} \right) = \left( { - 6,1, - 1} \right)$ ${\bf{N}}\left( {2,3} \right) = {{\bf{T}}_u} \times {{\bf{T}}_v} = \left| {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ 4&1&1\\ { - 6}&1&{ - 1} \end{array}} \right| = - 2{\bf{i}} - 2{\bf{j}} + 10{\bf{k}}$ $||{\bf{N}}\left( {2,3} \right)|| = \sqrt {{{\left( { - 2} \right)}^2} + {{\left( { - 2} \right)}^2} + {{10}^2}} = \sqrt {108} = 6\sqrt 3 $ We estimate the area of the small patch $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} {\rm{d}}S$ by $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} {\rm{d}}S \approx ||{\bf{N}}\left( {2,3} \right)||\Delta u\Delta v$ Since $2 \le u \le 2.1$ and $3 \le v \le 3.2$, so $\Delta u = 0.1$ and $\Delta v = 0.2$. $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} {\rm{d}}S \approx 6\sqrt 3 \cdot 0.1 \cdot 0.2 = 0.2078$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.