Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.4 Parametrized Surfaces and Surface Integrals - Exercises - Page 958: 25

Answer

$\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} z{\rm{d}}S = \frac{1}{{54}}\left( {10\sqrt {10} - 1} \right)$

Work Step by Step

We can parametrize the surface by $G\left( {x,y} \right) = \left( {x,y,{x^3}} \right)$. So, ${{\bf{T}}_x} = \frac{{\partial G}}{{\partial x}} = \left( {1,0,3{x^2}} \right)$ ${{\bf{T}}_y} = \frac{{\partial G}}{{\partial y}} = \left( {0,1,0} \right)$ ${\bf{N}}\left( {x,y} \right) = {{\bf{T}}_x} \times {{\bf{T}}_y} = \left| {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ 1&0&{3{x^2}}\\ 0&1&0 \end{array}} \right| = - 3{x^2}{\bf{i}} + {\bf{k}}$ $||{\bf{N}}\left( {x,y} \right)|| = \sqrt {1 + 9{x^4}} $ Since $f\left( {x,y,z} \right) = z$, we obtain $f\left( {G\left( {x,y} \right)} \right) = {x^3}$. By Eq. (7) of Theorem 1, we have $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} f\left( {x,y,z} \right){\rm{d}}S = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {G\left( {x,y} \right)} \right)||{\bf{N}}\left( {x,y} \right)||{\rm{d}}x{\rm{d}}y$ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} f\left( {x,y,z} \right){\rm{d}}S = \mathop \smallint \limits_{y = 0}^1 \mathop \smallint \limits_{x = 0}^1 {x^3}\sqrt {1 + 9{x^4}} {\rm{d}}x{\rm{d}}y$ Let $t = 1 + 9{x^4}$. So, $dt = 36{x^3}dx$. $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} f\left( {x,y,z} \right){\rm{d}}S = \frac{1}{{36}}\mathop \smallint \limits_{y = 0}^1 \mathop \smallint \limits_{t = 1}^{10} \sqrt t {\rm{d}}t{\rm{d}}y$ $ = \frac{1}{{36}}\cdot\frac{2}{3}\left( {{t^{3/2}}|_1^{10}} \right) = \frac{1}{{54}}\left( {10\sqrt {10} - 1} \right)$ So, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} z{\rm{d}}S = \frac{1}{{54}}\left( {10\sqrt {10} - 1} \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.