Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.4 Parametrized Surfaces and Surface Integrals - Exercises - Page 958: 27

Answer

The surface area of S: $Area\left( S \right) = 16$

Work Step by Step

We have ${{\bf{T}}_u} = \frac{{\partial G}}{{\partial u}} = \left( {2,0,1} \right)$, ${\ \ \ \ \ }$ ${{\bf{T}}_v} = \frac{{\partial G}}{{\partial v}} = \left( {4,0,3} \right)$ So, ${\bf{N}}\left( {u,v} \right) = {{\bf{T}}_u} \times {{\bf{T}}_v} = \left| {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ 2&0&1\\ 4&0&3 \end{array}} \right| = - 2{\bf{j}}$ $||{\bf{N}}\left( {u,v} \right)|| = 2$ The surface area of S: $Area\left( S \right) = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} ||{\bf{N}}\left( {u,v} \right)||{\rm{d}}u{\rm{d}}v$ $Area\left( S \right) = 2\mathop \smallint \limits_{u = 0}^2 \mathop \smallint \limits_{v = 0}^4 {\rm{d}}u{\rm{d}}v = 16$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.