Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.4 Parametrized Surfaces and Surface Integrals - Exercises - Page 958: 17

Answer

$\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} {x^2}{\rm{d}}S = \frac{\pi }{6}$

Work Step by Step

The surface is a sphere of radius $1$, so we can parametrize it by $G\left( {\theta ,\phi } \right) = \left( {\cos \theta \sin \phi ,\sin \theta \sin \phi ,\cos \phi } \right)$. ${{\bf{T}}_\theta } = \frac{{\partial G}}{{\partial \theta }} = \left( { - \sin \theta \sin \phi ,\cos \theta \sin \phi ,0} \right)$ ${{\bf{T}}_\phi } = \frac{{\partial G}}{{\partial \phi }} = \left( {\cos \theta \cos \phi ,\sin \theta \cos \phi , - \sin \phi } \right)$ By Eq. (2), the normal vector is ${\bf{N}}\left( {\theta ,\phi } \right) = \sin \phi {{\bf{e}}_r}$. So, $||{\bf{N}}\left( {\theta ,\phi } \right)|| = \sin \phi $. Since $x,y,z \ge 0$, the domain description in spherical coordinates is ${\cal D} = \left\{ {\left( {\theta ,\phi } \right):0 \le \theta \le \frac{\pi }{2},0 \le \phi \le \frac{\pi }{2}} \right\}$ Since $f\left( {x,y,z} \right) = {x^2}$, we obtain $f\left( {G\left( {\theta ,\phi } \right)} \right) = {\cos ^2}\theta {\sin ^2}\phi $. By Eq. (7) of Theorem 1, we have $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} f\left( {x,y,z} \right){\rm{d}}S = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {G\left( {\theta ,\phi } \right)} \right)||{\bf{N}}\left( {\theta ,\phi } \right)||{\rm{d}}\theta {\rm{d}}\phi $ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} f\left( {x,y,z} \right){\rm{d}}S = \mathop \smallint \limits_{\theta = 0}^{\pi /2} \mathop \smallint \limits_{\phi = 0}^{\pi /2} {\cos ^2}\theta {\sin ^3}\phi {\rm{d}}\theta {\rm{d}}\phi $ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} f\left( {x,y,z} \right){\rm{d}}S = \left( {\mathop \smallint \limits_{\theta = 0}^{\pi /2} {{\cos }^2}\theta {\rm{d}}\theta } \right)\left( {\mathop \smallint \limits_{\phi = 0}^{\pi /2} {{\sin }^3}\phi {\rm{d}}\phi } \right)$ From the Table of Integrals at the end of the book we obtain: $\smallint {\cos ^2}u{\rm{d}}u = \frac{1}{2}u + \frac{1}{4}\sin 2u + C$ and $\smallint {\sin ^3}u{\rm{d}}u = - \frac{1}{3}\left( {2 + {{\sin }^2}u} \right)\cos u + C$ So, the integral becomes $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} f\left( {x,y,z} \right){\rm{d}}S = \left( {\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta } \right)|_0^{\pi /2}\left( { - \frac{1}{3}\left( {2 + {{\sin }^2}u} \right)\cos u} \right)|_0^{\pi /2}$ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} f\left( {x,y,z} \right){\rm{d}}S = \left( {\frac{\pi }{4}} \right)\left( {\frac{2}{3}} \right) = \frac{\pi }{6}$ So, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} {x^2}{\rm{d}}S = \frac{\pi }{6}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.