Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.4 Parametrized Surfaces and Surface Integrals - Exercises - Page 958: 32

Answer

(a) Please see the figure attached (b) ${\bf{N}}\left( {u,v} \right) = \left( {3 + \sin v} \right)\cos u{\bf{i}} + \left( {3 + \sin v} \right)\sin u{\bf{j}} - \left( {3 + \sin v} \right)\cos v{\bf{k}}$ (c) $Area\left( S \right) \approx 144.0180$

Work Step by Step

(a) We plot $S$ from several different viewpoints. The result is given in the figure attached. From this figure we see that $S$ is best described as a "bottomless vase". (b) We have $G\left( {u,v} \right) = \left( {\left( {3 + \sin v} \right)\cos u,\left( {3 + \sin v} \right)\sin u,v} \right)$. So, ${{\bf{T}}_u} = \frac{{\partial G}}{{\partial u}} = \left( { - \left( {3 + \sin v} \right)\sin u,\left( {3 + \sin v} \right)\cos u,0} \right)$ ${{\bf{T}}_v} = \frac{{\partial G}}{{\partial v}} = \left( {\cos v\cos u,\cos v\sin u,1} \right)$ ${\bf{N}}\left( {u,v} \right) = \left| {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ { - \left( {3 + \sin v} \right)\sin u}&{\left( {3 + \sin v} \right)\cos u}&0\\ {\cos v\cos u}&{\cos v\sin u}&1 \end{array}} \right|$ ${\bf{N}}\left( {u,v} \right) = \left( {3 + \sin v} \right)\cos u{\bf{i}} + \left( {3 + \sin v} \right)\sin u{\bf{j}}$ $ + \left[ { - \left( {3 + \sin v} \right)\cos v{{\sin }^2}u - \left( {3 + \sin v} \right)\cos v{{\cos }^2}u} \right]{\bf{k}}$ ${\bf{N}}\left( {u,v} \right) = \left( {3 + \sin v} \right)\cos u{\bf{i}} + \left( {3 + \sin v} \right)\sin u{\bf{j}} - \left( {3 + \sin v} \right)\cos v{\bf{k}}$ Using a computer algebra system, we obtain $||{\bf{N}}\left( {u,v} \right)|| = \frac{1}{2}\sqrt {2\left( {3 + \cos 2v} \right){{\left( {3 + \sin v} \right)}^2}} $ (c) By Theorem 1, the surface area of $S$ is $Area\left( S \right) = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} ||{\bf{N}}\left( {u,v} \right)||{\rm{d}}u{\rm{d}}v$ $Area\left( S \right) = \frac{1}{2}\mathop \smallint \limits_{u = 0}^{2\pi } \mathop \smallint \limits_{v = 0}^{2\pi } \sqrt {2\left( {3 + \cos 2v} \right){{\left( {3 + \sin v} \right)}^2}} {\rm{d}}u{\rm{d}}v$ $ = \pi \mathop \smallint \limits_{v = 0}^{2\pi } \sqrt {2\left( {3 + \cos 2v} \right){{\left( {3 + \sin v} \right)}^2}} {\rm{d}}v$ Using a computer algebra system, we evaluate the integral and obtain $Area\left( S \right) \approx 144.0180$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.