Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.7 Taylor Series - Exercises - Page 590: 92

Answer

We prove: $L \approx \dfrac{\pi }{2}\left( {3b + \dfrac{{{a^2}}}{b}} \right)$

Work Step by Step

We have from Exercise 90: $G\left( k \right) = \dfrac{\pi }{2} - \dfrac{\pi }{2}\mathop \sum \limits_{n = 1}^\infty {\left( {\dfrac{{1\cdot3\cdot\cdot\cdot\left( {2n - 1} \right)}}{{2\cdot\cdot\cdot4\cdot\left( {2n} \right)}}} \right)^2}\dfrac{{{k^{2n}}}}{{2n - 1}}$, ${\ \ \ }$ converges for $\left| k \right| \lt 1$. We use the first two terms of the series, so $G\left( k \right) \approx \dfrac{\pi }{2} - \dfrac{\pi }{2}{\left( {\dfrac{1}{2}} \right)^2}{k^2}$ From Exercise 91, we also know that the arc length of the ellipse is $L = 4bG\left( k \right)$, where $k = \sqrt {1 - \dfrac{{{a^2}}}{{{b^2}}}} $. So, ${k^2} = 1 - \dfrac{{{a^2}}}{{{b^2}}}$. Substituting ${k^2}$ in $L = 4bG\left( k \right)$ gives $L \approx 4b\left[ {\dfrac{\pi }{2} - \dfrac{\pi }{2}{{\left( {\dfrac{1}{2}} \right)}^2}\left( {1 - \dfrac{{{a^2}}}{{{b^2}}}} \right)} \right]$ $L \approx 4b\left( {\dfrac{\pi }{2} - \dfrac{\pi }{8} + \dfrac{\pi }{8}\dfrac{{{a^2}}}{{{b^2}}}} \right) = 4b\left( {\dfrac{{3\pi }}{8} + \dfrac{\pi }{8}\dfrac{{{a^2}}}{{{b^2}}}} \right)$ Hence, $L \approx \dfrac{\pi }{2}\left( {3b + \dfrac{{{a^2}}}{b}} \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.