Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.7 Taylor Series - Exercises - Page 590: 86

Answer

(a) We show that $\dfrac{1}{{1 + x}} = \mathop \sum \limits_{n = 0}^N {\left( { - 1} \right)^n}{x^n} + \dfrac{{{{\left( { - 1} \right)}^{N + 1}}{x^{N + 1}}}}{{1 + x}}$ (b) We show that $\ln 2 = \mathop \sum \limits_{n = 1}^N \dfrac{{{{\left( { - 1} \right)}^{n - 1}}}}{n} + {\left( { - 1} \right)^{N + 1}}\mathop \smallint \limits_0^1 \dfrac{{{x^{N + 1}}}}{{1 + x}}{\rm{d}}x$ (c) We show that as $N \to \infty $, $\mathop \smallint \limits_0^1 \dfrac{{{x^{N + 1}}}}{{1 + x}}{\rm{d}}x$ approaches zero. (d) We prove: $\ln 2 = 1 - \dfrac{1}{2} + \dfrac{1}{3} - \dfrac{1}{4} + \cdot\cdot\cdot$

Work Step by Step

(a) From Table 2, we have $\dfrac{1}{{1 + x}} = \mathop \sum \limits_{n = 0}^\infty {\left( { - 1} \right)^n}{x^n} = 1 - x + {x^2} - {x^3} + {x^4} - \cdot\cdot\cdot$, ${\ \ \ }$ converges for $\left| x \right| \lt 1$ Write as (1) ${\ \ \ \ \ }$ $\dfrac{1}{{1 + x}} = \mathop \sum \limits_{n = 0}^N {\left( { - 1} \right)^n}{x^n} + \mathop \sum \limits_{n = N + 1}^\infty {\left( { - 1} \right)^n}{x^n}$ Notice that the second sum on the right-hand side of equation (1) can be written as $\mathop \sum \limits_{n = N + 1}^\infty {\left( { - 1} \right)^n}{x^n} = \mathop \sum \limits_{n = 0}^\infty {\left( { - 1} \right)^{N + 1 + n}}{x^{N + 1 + n}}$ Thus, $\mathop \sum \limits_{n = N + 1}^\infty {\left( { - 1} \right)^n}{x^n} = {\left( { - 1} \right)^{N + 1}}{x^{N + 1}}\mathop \sum \limits_{n = 0}^\infty {\left( { - 1} \right)^n}{x^n}$ Since $\mathop \sum \limits_{n = 0}^\infty {\left( { - 1} \right)^n}{x^n} = \dfrac{1}{{1 + x}}$, so $\mathop \sum \limits_{n = N + 1}^\infty {\left( { - 1} \right)^n}{x^n} = \dfrac{{{{\left( { - 1} \right)}^{N + 1}}{x^{N + 1}}}}{{1 + x}}$. Therefore, equation (1) becomes $\dfrac{1}{{1 + x}} = \mathop \sum \limits_{n = 0}^N {\left( { - 1} \right)^n}{x^n} + \dfrac{{{{\left( { - 1} \right)}^{N + 1}}{x^{N + 1}}}}{{1 + x}}$ (b) From part (a), we obtain $\dfrac{1}{{1 + x}} = \mathop \sum \limits_{n = 0}^N {\left( { - 1} \right)^n}{x^n} + \dfrac{{{{\left( { - 1} \right)}^{N + 1}}{x^{N + 1}}}}{{1 + x}}$ Integrating from $0$ to $1$: $\mathop \smallint \limits_0^1 \dfrac{1}{{1 + x}}{\rm{d}}x = \mathop \sum \limits_{n = 0}^N {\left( { - 1} \right)^n}\mathop \smallint \limits_0^1 {x^n}{\rm{d}}x + {\left( { - 1} \right)^{N + 1}}\mathop \smallint \limits_0^1 \dfrac{{{x^{N + 1}}}}{{1 + x}}{\rm{d}}x$ $\left[ {\ln \left( {1 + x} \right)} \right]_0^1 = \mathop \sum \limits_{n = 0}^N {\left( { - 1} \right)^n}\dfrac{1}{{n + 1}}\left( {{x^{n + 1}}} \right)|_0^1 + {\left( { - 1} \right)^{N + 1}}\mathop \smallint \limits_0^1 \dfrac{{{x^{N + 1}}}}{{1 + x}}{\rm{d}}x$ $\ln 2 = \mathop \sum \limits_{n = 0}^N \dfrac{{{{\left( { - 1} \right)}^n}}}{{n + 1}} + {\left( { - 1} \right)^{N + 1}}\mathop \smallint \limits_0^1 \dfrac{{{x^{N + 1}}}}{{1 + x}}{\rm{d}}x$ By shifting the index, we get $\ln 2 = \mathop \sum \limits_{n = 1}^N \dfrac{{{{\left( { - 1} \right)}^{n - 1}}}}{n} + {\left( { - 1} \right)^{N + 1}}\mathop \smallint \limits_0^1 \dfrac{{{x^{N + 1}}}}{{1 + x}}{\rm{d}}x$ (c) From part (b), we obtain $\ln 2 = \mathop \sum \limits_{n = 1}^N \dfrac{{{{\left( { - 1} \right)}^{n - 1}}}}{n} + {\left( { - 1} \right)^{N + 1}}\mathop \smallint \limits_0^1 \dfrac{{{x^{N + 1}}}}{{1 + x}}{\rm{d}}x$ Consider the integrand $\dfrac{{{x^{N + 1}}}}{{1 + x}}$ on the right-hand side: For $0 \lt x \lt 1$, we have $0 \lt \dfrac{{{x^{N + 1}}}}{{1 + x}} \lt {x^{N + 1}}$ Therefore, $0 \lt \mathop \smallint \limits_0^1 \dfrac{{{x^{N + 1}}}}{{1 + x}}{\rm{d}}x \lt \mathop \smallint \limits_0^1 {x^{N + 1}}{\rm{d}}x = \dfrac{1}{{N + 1}}\left( {{x^{N + 1}}} \right)|_0^1$ $0 \lt \mathop \smallint \limits_0^1 \dfrac{{{x^{N + 1}}}}{{1 + x}}{\rm{d}}x \lt \dfrac{1}{{N + 1}}$ Taking the limit as $N \to \infty $, $0 \lt \mathop {\lim }\limits_{N \to \infty } \mathop \smallint \limits_0^1 \dfrac{{{x^{N + 1}}}}{{1 + x}}{\rm{d}}x \lt \mathop {\lim }\limits_{N \to \infty } \dfrac{1}{{N + 1}}$ $0 \lt \mathop {\lim }\limits_{N \to \infty } \mathop \smallint \limits_0^1 \dfrac{{{x^{N + 1}}}}{{1 + x}}{\rm{d}}x \lt 0$ By Squeeze Theorem: as $N \to \infty $, $\mathop \smallint \limits_0^1 \dfrac{{{x^{N + 1}}}}{{1 + x}}{\rm{d}}x$ approaches zero. (d) From part (b), we obtain $\ln 2 = \mathop \sum \limits_{n = 1}^N \dfrac{{{{\left( { - 1} \right)}^{n - 1}}}}{n} + {\left( { - 1} \right)^{N + 1}}\mathop \smallint \limits_0^1 \dfrac{{{x^{N + 1}}}}{{1 + x}}{\rm{d}}x$ Also from part (c), we conclude that as $N \to \infty $, $\mathop \smallint \limits_0^1 \dfrac{{{x^{N + 1}}}}{{1 + x}}{\rm{d}}x$ approaches zero. Therefore, as $N \to \infty $, we obtain $\ln 2 = \mathop \sum \limits_{n = 1}^\infty \dfrac{{{{\left( { - 1} \right)}^{n - 1}}}}{n}$ Hence, $\ln 2 = 1 - \dfrac{1}{2} + \dfrac{1}{3} - \dfrac{1}{4} + \cdot\cdot\cdot$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.