Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.7 Taylor Series - Exercises - Page 590: 87

Answer

(a) We show that $\mathop \smallint \limits_0^1 g\left( t \right){\rm{d}}t = \dfrac{\pi }{4} - \dfrac{1}{2}\ln 2$ (b) We show that $g\left( t \right) = 1 - t - {t^2} + {t^3} + {t^4} - {t^5} - {t^6} + \cdot\cdot\cdot$ (c) $S = 1 - \dfrac{1}{2} - \dfrac{1}{3} + \dfrac{1}{4} + \dfrac{1}{5} - \dfrac{1}{6} - \dfrac{1}{7} + \cdot\cdot\cdot = \dfrac{\pi }{4} - \dfrac{1}{2}\ln 2$

Work Step by Step

(a) We have $g\left( t \right) = \dfrac{1}{{1 + {t^2}}} - \dfrac{t}{{1 + {t^2}}}$. Take the integral: (1) ${\ \ \ \ \ }$ $\mathop \smallint \limits_0^1 g\left( t \right){\rm{d}}t = \mathop \smallint \limits_0^1 \dfrac{1}{{1 + {t^2}}}{\rm{d}}t - \mathop \smallint \limits_0^1 \dfrac{t}{{1 + {t^2}}}{\rm{d}}t$ 1. Consider the integral: $\mathop \smallint \limits_0^1 \dfrac{1}{{1 + {t^2}}}{\rm{d}}t$ From the Table of Integrals at the end of the book, we know that $\smallint \dfrac{1}{{{a^2} + {u^2}}}{\rm{d}}u = \dfrac{1}{a}{\tan ^{ - 1}}\dfrac{u}{a} + C$ So, $\mathop \smallint \limits_0^1 \dfrac{1}{{1 + {t^2}}}{\rm{d}}t = {\tan ^{ - 1}}t|_0^1 = \dfrac{\pi }{4}$ 2. Consider the integral: $\mathop \smallint \limits_0^1 \dfrac{t}{{1 + {t^2}}}{\rm{d}}t$ Let $u = {t^2}$. So, $du = 2tdt$. The integral becomes $\mathop \smallint \limits_0^1 \dfrac{t}{{1 + {t^2}}}{\rm{d}}t = \dfrac{1}{2}\mathop \smallint \limits_0^1 \dfrac{1}{{1 + u}}{\rm{d}}u = \dfrac{1}{2}\ln \left( {1 + u} \right)|_0^1 = \dfrac{1}{2}\ln 2$ Substituting $\mathop \smallint \limits_0^1 \dfrac{1}{{1 + {t^2}}}{\rm{d}}t = \dfrac{\pi }{4}$ and $\mathop \smallint \limits_0^1 \dfrac{t}{{1 + {t^2}}}{\rm{d}}t = \dfrac{1}{2}\ln 2$ in equation (1) gives $\mathop \smallint \limits_0^1 g\left( t \right){\rm{d}}t = \dfrac{\pi }{4} - \dfrac{1}{2}\ln 2$ (b) From Table 2, we have $\dfrac{1}{{1 + t}} = \mathop \sum \limits_{n = 0}^\infty {\left( { - 1} \right)^n}{t^n} = 1 - t + {t^2} - {t^3} + {t^4} - \cdot\cdot\cdot$, ${\ \ \ }$ converges for $\left| t \right| \lt 1$ Substituting ${t^2}$ for $t$ in the series above gives $\dfrac{1}{{1 + {t^2}}} = \mathop \sum \limits_{n = 0}^\infty {\left( { - 1} \right)^n}{t^{2n}} = 1 - {t^2} + {t^4} - {t^6} + {t^8} - \cdot\cdot\cdot$, ${\ \ \ }$ converges for $\left| {{t^2}} \right| \lt 1$ or $\left| t \right| \lt 1$ Thus, $g\left( t \right) = \dfrac{1}{{1 + {t^2}}} - \dfrac{t}{{1 + {t^2}}}$ $g\left( t \right) = \left( {1 - {t^2} + {t^4} - {t^6} + {t^8} - \cdot\cdot\cdot} \right) - t\left( {1 - {t^2} + {t^4} - {t^6} + {t^8} - \cdot\cdot\cdot} \right)$ $g\left( t \right) = \left( {1 - {t^2} + {t^4} - {t^6} + {t^8} - \cdot\cdot\cdot} \right) - \left( {t - {t^3} + {t^5} - {t^7} + {t^9} - \cdot\cdot\cdot} \right)$ Hence, $g\left( t \right) = 1 - t - {t^2} + {t^3} + {t^4} - {t^5} - {t^6} + \cdot\cdot\cdot$. (c) From part (b), we obtain $g\left( t \right) = 1 - t - {t^2} + {t^3} + {t^4} - {t^5} - {t^6} + \cdot\cdot\cdot$ Taking the integral on both sides gives $\mathop \smallint \limits_0^1 g\left( t \right){\rm{d}}t = \mathop \smallint \limits_0^1 1{\rm{d}}t - \mathop \smallint \limits_0^1 t{\rm{d}}t - \mathop \smallint \limits_0^1 {t^2}{\rm{d}}t + \mathop \smallint \limits_0^1 {t^3}{\rm{d}}t + \mathop \smallint \limits_0^1 {t^4}{\rm{d}}t - \mathop \smallint \limits_0^1 {t^5}{\rm{d}}t - \mathop \smallint \limits_0^1 {t^6}{\rm{d}}t + \cdot\cdot\cdot$ From part (a), we know that $\mathop \smallint \limits_0^1 g\left( t \right){\rm{d}}t = \dfrac{\pi }{4} - \dfrac{1}{2}\ln 2$ So, $\dfrac{\pi }{4} - \dfrac{1}{2}\ln 2 = \left( t \right)|_0^1 - \dfrac{1}{2}\left( {{t^2}} \right)|_0^1 - \dfrac{1}{3}\left( {{t^3}} \right)|_0^1 + \dfrac{1}{4}\left( {{t^4}} \right)|_0^1 + \dfrac{1}{5}\left( {{t^5}} \right)|_0^1 - \dfrac{1}{6}\left( {{t^6}} \right)|_0^1 - \dfrac{1}{7}\mathop \smallint \limits_0^1 {t^7}{\rm{d}}t + \cdot\cdot\cdot$ $\dfrac{\pi }{4} - \dfrac{1}{2}\ln 2 = 1 - \dfrac{1}{2} - \dfrac{1}{3} + \dfrac{1}{4} + \dfrac{1}{5} - \dfrac{1}{6} - \dfrac{1}{7} + \cdot\cdot\cdot$ Write $S = 1 - \dfrac{1}{2} - \dfrac{1}{3} + \dfrac{1}{4} + \dfrac{1}{5} - \dfrac{1}{6} - \dfrac{1}{7} + \cdot\cdot\cdot$, so $S = 1 - \dfrac{1}{2} - \dfrac{1}{3} + \dfrac{1}{4} + \dfrac{1}{5} - \dfrac{1}{6} - \dfrac{1}{7} + \cdot\cdot\cdot = \dfrac{\pi }{4} - \dfrac{1}{2}\ln 2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.