Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.7 Taylor Series - Exercises - Page 590: 81

Answer

We show the following: $T \approx 2\pi \sqrt {\dfrac{L}{g}} \left( {1 + \dfrac{{{\theta ^2}}}{{16}}} \right)$

Work Step by Step

Recall from Example 12, we have $\dfrac{1}{{\sqrt {1 - {k^2}{{\sin }^2}t} }} = 1 + \dfrac{1}{2}{k^2}{\sin ^2}t + \dfrac{{1\cdot3}}{{2\cdot4}}{k^4}{\sin ^4}t + \dfrac{{1\cdot3\cdot5}}{{2\cdot4\cdot6}}{k^6}{\sin ^6}t + \cdot\cdot\cdot$ Keeping only the second-order approximation, we get $\dfrac{1}{{\sqrt {1 - {k^2}{{\sin }^2}t} }} \approx 1 + \dfrac{1}{2}{k^2}{\sin ^2}t$ Recall that the period $T$ is given by (1) ${\ \ \ \ \ }$ $T = 4\sqrt {\dfrac{L}{g}} E\left( k \right)$, where $E\left( k \right) = \mathop \smallint \limits_0^{\dfrac{\pi }{2}} \dfrac{1}{{\sqrt {1 - {k^2}{{\sin }^2}t} }}{\rm{d}}t$ and $k = \sin \dfrac{\theta }{2}$. For small $\theta $, we have $k = \sin \dfrac{\theta }{2} \approx \dfrac{\theta }{2}$. Substituting $k \approx \dfrac{\theta }{2}$ and $\dfrac{1}{{\sqrt {1 - {k^2}{{\sin }^2}t} }} \approx 1 + \dfrac{1}{2}{k^2}{\sin ^2}t$ into equation (1) gives $T \approx 4\sqrt {\dfrac{L}{g}} \mathop \smallint \limits_0^{\dfrac{\pi }{2}} \left( {1 + \dfrac{1}{8}{\theta ^2}{{\sin }^2}t} \right){\rm{d}}t$ Using $\cos 2x = 1 - 2{\sin ^2}x$ or ${\sin ^2}x = \dfrac{1}{2}\left( {1 - \cos 2x} \right)$, we get $T \approx 4\sqrt {\dfrac{L}{g}} \mathop \smallint \limits_0^{\dfrac{\pi }{2}} \left( {1 + \dfrac{1}{{16}}{\theta ^2}\left( {1 - \cos 2t} \right)} \right){\rm{d}}t$ $T \approx 4\sqrt {\dfrac{L}{g}} \left[ {t + \dfrac{{{\theta ^2}}}{{16}}\left( {t - \dfrac{1}{2}\sin 2t} \right)} \right]_0^{\dfrac{\pi }{2}} = 4\sqrt {\dfrac{L}{g}} \left( {\dfrac{\pi }{2} + \dfrac{{{\theta ^2}}}{{16}}\cdot\dfrac{\pi }{2}} \right)$ Hence, $T \approx 2\pi \sqrt {\dfrac{L}{g}} \left( {1 + \dfrac{{{\theta ^2}}}{{16}}} \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.