Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.7 Taylor Series - Exercises - Page 590: 88

Answer

We prove the following: Case 1. $a$ is not a whole number The radius of convergence is $R=1$. Case 2. $a$ is a positive whole number The radius of convergence is $R = \infty $.

Work Step by Step

We have the binomial series: ${T_a}\left( x \right) = \mathop \sum \limits_{n = 0}^\infty \left( {\begin{array}{*{20}{c}} a\\ n \end{array}} \right){x^n}$. Write out the expansion: ${T_a}\left( x \right) = \mathop \sum \limits_{n = 0}^\infty \left( {\begin{array}{*{20}{c}} a\\ n \end{array}} \right){x^n} = 1 + ax + \dfrac{{a\left( {a - 1} \right)}}{{2!}}{x^2} + \dfrac{{a\left( {a - 1} \right)\left( {a - 2} \right)}}{{3!}}{x^3} + \cdot\cdot\cdot + \dfrac{{a\left( {a - 1} \right)\left( {a - 2} \right)\cdot\cdot\cdot\left( {a - n + 1} \right)}}{{n!}}{x^n} + \cdot\cdot\cdot$ Case 1. $a$ is not a whole number We examine the radius of convergence by computing the ratio and its limit with ${a_n} = \dfrac{{a\left( {a - 1} \right)\left( {a - 2} \right)\cdot\cdot\cdot\left( {a - n + 1} \right)}}{{n!}}{x^n}$. $\rho = \mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{{a_{n + 1}}}}{{{a_n}}}} \right|$ $\rho = \mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{a\left( {a - 1} \right)\left( {a - 2} \right)\cdot\cdot\cdot\left( {a - n} \right)}}{{\left( {n + 1} \right)!}}{x^{n + 1}}\cdot\dfrac{{n!}}{{a\left( {a - 1} \right)\left( {a - 2} \right)\cdot\cdot\cdot\left( {a - n + 1} \right)}}\cdot\dfrac{1}{{{x^n}}}} \right|$ $\rho = \left| x \right|\mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{a - n}}{{n + 1}}} \right|$ $\rho = \left| x \right|\mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{a}{{n + 1}} - \dfrac{n}{{n + 1}}} \right| = \left| x \right|\mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{a}{{n + 1}} - \dfrac{1}{{1 + \dfrac{1}{n}}}} \right|$ $\rho = \left| x \right|$ We find that $\rho \lt 1$ if $\left| x \right| \lt 1$. By the Ratio Test, the binomial series is convergent if $\left| x \right| \lt 1$. Thus, the radius of convergence is $R=1$. Case 2. $a$ is a positive whole number In this case, $\left( {\begin{array}{*{20}{c}} a\\ n \end{array}} \right)$ is zero for $n \gt a$. Thus, the series breaks off at degree $n$. This implies that ${T_a}\left( x \right)$ is a polynomial of degree $a$. Since ${T_a}\left( x \right)$ is a polynomial, it converges for all $x$. Thus, the radius of convergence is $R = \infty $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.