Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.7 Taylor Series - Exercises - Page 590: 82

Answer

$\mathop {\lim }\limits_{x \to 0} \dfrac{{\cos x - 1 + \dfrac{{{x^2}}}{2}}}{{{x^4}}} = \dfrac{1}{{24}}$

Work Step by Step

From Table 2 we have $\cos x = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^n}{x^{2n}}}}{{\left( {2n} \right)!}} = 1 - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} - \dfrac{{{x^6}}}{{6!}} + \cdot\cdot\cdot$, ${\ \ \ }$ converges for all $x$ Hence, the limit becomes $\mathop {\lim }\limits_{x \to 0} \dfrac{{\cos x - 1 + \dfrac{{{x^2}}}{2}}}{{{x^4}}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{{x^4}}}{{4!}} - \dfrac{{{x^6}}}{{6!}} + \cdot\cdot\cdot}}{{{x^4}}} = \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{1}{{4!}} - \dfrac{{{x^2}}}{{6!}} + \cdot\cdot\cdot} \right)$ Thus, $\mathop {\lim }\limits_{x \to 0} \dfrac{{\cos x - 1 + \dfrac{{{x^2}}}{2}}}{{{x^4}}} = \dfrac{1}{{4!}} = \dfrac{1}{{24}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.