Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.7 Taylor Series - Exercises - Page 590: 84

Answer

$\mathop {\lim }\limits_{x \to 0} \dfrac{{{{\tan }^{ - 1}}x - x\cos x - \dfrac{1}{6}{x^3}}}{{{x^5}}} = \dfrac{{19}}{{120}}$

Work Step by Step

From Table 2 we have ${\tan ^{ - 1}}x = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^n}{x^{2n + 1}}}}{{2n + 1}} = x - \dfrac{{{x^3}}}{3} + \dfrac{{{x^5}}}{5} - \dfrac{{{x^7}}}{7} + \cdot\cdot\cdot$, ${\ \ \ }$ converges for $\left| x \right| \le 1$ $\cos x = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^n}{x^{2n}}}}{{\left( {2n} \right)!}} = 1 - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} - \dfrac{{{x^6}}}{{6!}} + \cdot\cdot\cdot$, ${\ \ \ }$ converges for all $x$ So, $x\cos x = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^n}{x^{2n + 1}}}}{{\left( {2n} \right)!}} = x - \dfrac{{{x^3}}}{{2!}} + \dfrac{{{x^5}}}{{4!}} - \dfrac{{{x^7}}}{{6!}} + \cdot\cdot\cdot$ Hence, the limit becomes $\mathop {\lim }\limits_{x \to 0} \dfrac{{{{\tan }^{ - 1}}x - x\cos x - \dfrac{1}{6}{x^3}}}{{{x^5}}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {x - \dfrac{{{x^3}}}{3} + \dfrac{{{x^5}}}{5} - \dfrac{{{x^7}}}{7} + \cdot\cdot\cdot} \right) - \left( {x - \dfrac{{{x^3}}}{{2!}} + \dfrac{{{x^5}}}{{4!}} - \dfrac{{{x^7}}}{{6!}} + \cdot\cdot\cdot} \right) - \dfrac{1}{6}{x^3}}}{{{x^5}}}$ Collecting terms with same orders, we get $\mathop {\lim }\limits_{x \to 0} \dfrac{{\left( { - \dfrac{{{x^3}}}{3} + \dfrac{{{x^3}}}{2} - \dfrac{1}{6}{x^3}} \right) + \left( {\dfrac{{{x^5}}}{5} - \dfrac{{{x^5}}}{{4!}}} \right) - \left[ {\left( { - \dfrac{{{x^7}}}{{6!}} + \dfrac{{{x^7}}}{7}} \right) + \cdot\cdot\cdot} \right]}}{{{x^5}}} = \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{1}{5} - \dfrac{1}{{4!}}} \right) - \left[ {\left( { - \dfrac{{{x^2}}}{{6!}} + \dfrac{{{x^2}}}{7}} \right) + \cdot\cdot\cdot} \right]$ Thus, $\mathop {\lim }\limits_{x \to 0} \dfrac{{{{\tan }^{ - 1}}x - x\cos x - \dfrac{1}{6}{x^3}}}{{{x^5}}} = \dfrac{1}{5} - \dfrac{1}{{24}} = \dfrac{{19}}{{120}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.