Answer
The series diverges
Work Step by Step
$if\lim _{n\rightarrow \infty }a_{n}\neq 0\Rightarrow \sum ^{n}_{1}a_{n}$ diverges
$\lim _{n\rightarrow \infty }\dfrac {\eta }{2n+3}=\dfrac {n/n}{2n/n+3/n}=\dfrac {1}{2+\dfrac {3}{n}}=\dfrac {1}{2}\neq 0$
So the series diverges