Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 15 - Vector Analysis - 15.1 Exercises - Page 1049: 56

Answer

$f(x, y, z) = \frac{1}{2} \ln(x^2+y^2) + z + K$

Work Step by Step

\[ \mathbf{F}(x, y, z) = \frac{x}{x^2+y^2}\mathbf{i} + \frac{y}{x^2+y^2}\mathbf{j} + 1\mathbf{k} \] \[ \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \dfrac{\partial}{\partial x} & \dfrac{\partial}{\partial y} & \dfrac{\partial}{\partial z} \\ \dfrac{x}{x^2+y^2} & \dfrac{y}{x^2+y^2} & 1 \end{vmatrix} \] \[ = \left(\frac{\partial}{\partial y}1 - \frac{\partial}{\partial z}\frac{y}{x^2+y^2}\right)\mathbf{i} - \left(\frac{\partial}{\partial x}1 - \frac{\partial}{\partial z}\frac{x}{x^2+y^2}\right)\mathbf{j} + \left(\frac{\partial}{\partial x}\frac{y}{x^2+y^2} - \frac{\partial}{\partial y}\frac{x}{x^2+y^2}\right)\mathbf{k} \] \[ = 0\mathbf{i} - 0\mathbf{j} + 0\mathbf{k} \] \[ \therefore \mathbf{F} \text{ is conservative in any domain excluding } (0,0,z) \] \[ f(x, y, z) = \int f_x\,dx = \int \frac{x}{x^2+y^2}\,dx = \frac{1}{2} \ln(x^2+y^2) + g(y, z)+K1 \] \[ f(x, y, z) = \int f_y\,dy = \int \frac{y}{x^2+y^2}\,dy = \frac{1}{2} \ln(x^2+y^2) + h(x, z) +K2 \] \[ f(x, y, z) = \int f_z\,dz = \int 1\,dz = z + k(x, y)+K3 \] \[ \text{Combine: } f(x, y, z) = \frac{1}{2} \ln(x^2+y^2) + z + K \] \[ \boxed{f(x, y, z) = \frac{1}{2} \ln(x^2+y^2) + z + K} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.