Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 15 - Vector Analysis - 15.1 Exercises - Page 1049: 50

Answer

$\text{curl } \mathbf{F} = \frac{1}{\sqrt{x^2 + y^2 + z^2}} \left[ (y - z)\mathbf{i} + (z - x)\mathbf{j} + (x - y)\mathbf{k} \right]$

Work Step by Step

$F(x, y, z) = \sqrt{x^2 + y^2 + z^2}(\mathbf{i} + \mathbf{j} + \mathbf{k})$ $\text{curl } \mathbf{F} = \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$ where $P = \sqrt{x^2 + y^2 + z^2}$, $Q = \sqrt{x^2 + y^2 + z^2}$, and $R = \sqrt{x^2 + y^2 + z^2}$. $\text{curl } \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \sqrt{x^2 + y^2 + z^2} & \sqrt{x^2 + y^2 + z^2} & \sqrt{x^2 + y^2 + z^2} \end{vmatrix}$ $\text{curl } \mathbf{F} = \left( \frac{\partial}{\partial y}(\sqrt{x^2 + y^2 + z^2}) - \frac{\partial}{\partial z}(\sqrt{x^2 + y^2 + z^2}) \right)\mathbf{i} - \left( \frac{\partial}{\partial x}(\sqrt{x^2 + y^2 + z^2}) - \frac{\partial}{\partial z}(\sqrt{x^2 + y^2 + z^2}) \right)\mathbf{j} + \left( \frac{\partial}{\partial x}(\sqrt{x^2 + y^2 + z^2}) - \frac{\partial}{\partial y}(\sqrt{x^2 + y^2 + z^2}) \right)\mathbf{k}$ $= \left( \frac{y}{\sqrt{x^2 + y^2 + z^2}} - \frac{z}{\sqrt{x^2 + y^2 + z^2}} \right)\mathbf{i} - \left( \frac{x}{\sqrt{x^2 + y^2 + z^2}} - \frac{z}{\sqrt{x^2 + y^2 + z^2}} \right)\mathbf{j} + \left( \frac{x}{\sqrt{x^2 + y^2 + z^2}} - \frac{y}{\sqrt{x^2 + y^2 + z^2}} \right)\mathbf{k}$ $= \frac{1}{\sqrt{x^2 + y^2 + z^2}} \left[ (y - z)\mathbf{i} - (x - z)\mathbf{j} + (x - y)\mathbf{k} \right]$ $= \frac{1}{\sqrt{x^2 + y^2 + z^2}} \left[ (y - z)\mathbf{i} + (z - x)\mathbf{j} + (x - y)\mathbf{k} \right]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.