Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 15 - Vector Analysis - 15.1 Exercises - Page 1049: 49

Answer

$\text{curl } \mathbf{F} = \cos(y - z)\mathbf{i} + \cos(z - x)\mathbf{j} + \cos(x - y)\mathbf{k}$

Work Step by Step

$F(x, y, z) = \sin(x - y)\mathbf{i} + \sin(y - z)\mathbf{j} + \sin(z - x)\mathbf{k}$ $\text{curl } \mathbf{F} = \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$ where $P = \sin(x - y)$, $Q = \sin(y - z)$, and $R = \sin(z - x)$. $\text{curl } \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \sin(x - y) & \sin(y - z) & \sin(z - x) \end{vmatrix}$ $\text{curl } \mathbf{F} = \left( \frac{\partial}{\partial y}(\sin(z - x)) - \frac{\partial}{\partial z}(\sin(y - z)) \right)\mathbf{i} - \left( \frac{\partial}{\partial x}(\sin(z - x)) - \frac{\partial}{\partial z}(\sin(x - y)) \right)\mathbf{j} + \left( \frac{\partial}{\partial x}(\sin(y - z)) - \frac{\partial}{\partial y}(\sin(x - y)) \right)\mathbf{k}$ $= \left( 0 - (-\cos(y - z)) \right)\mathbf{i} - \left( (-\cos(z - x)) - 0 \right)\mathbf{j} + \left( 0 - (-\cos(x - y)) \right)\mathbf{k}$ $= \left( \cos(y - z) \right)\mathbf{i} - \left( -\cos(z - x) \right)\mathbf{j} + \left( \cos(x - y) \right)\mathbf{k}$ $= \cos(y - z)\mathbf{i} + \cos(z - x)\mathbf{j} + \cos(x - y)\mathbf{k}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.