Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 15 - Vector Analysis - 15.1 Exercises - Page 1049: 54

Answer

$\text{The vector field } \mathbf{F} \text{ is not conservative. No potential function } f(x,y,z) \text{ exists.}$

Work Step by Step

\[ \mathbf{F}(x,y,z) = y e^z \mathbf{i} + z e^x \mathbf{j} + x e^y \mathbf{k} \] \[ \text{curl } \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y e^z & z e^x & x e^y \end{vmatrix} \] \[ = \left( \frac{\partial}{\partial y}(x e^y) - \frac{\partial}{\partial z}(z e^x) \right)\mathbf{i} - \left( \frac{\partial}{\partial x}(x e^y) - \frac{\partial}{\partial z}(y e^z) \right)\mathbf{j} + \left( \frac{\partial}{\partial x}(z e^x) - \frac{\partial}{\partial y}(y e^z) \right)\mathbf{k} \] \[ = \left( x e^y - e^x \right)\mathbf{i} - \left( e^y - y e^z \right)\mathbf{j} + \left( z e^x - e^z \right)\mathbf{k} \] \[ = (x e^y - e^x)\mathbf{i} + (y e^z - e^y)\mathbf{j} + (z e^x - e^z)\mathbf{k} \] \[ \nabla \times \mathbf{F} = (x e^y - e^x)\mathbf{i} + (y e^z - e^y)\mathbf{j} + (z e^x - e^z)\mathbf{k} \neq \mathbf{0} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.