Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 15 - Vector Analysis - 15.1 Exercises - Page 1049: 48

Answer

$\text{curl } \mathbf{F} = \mathbf{0}$

Work Step by Step

$F(x, y, z) = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ $\text{curl } \mathbf{F} = \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$ where $P = x$, $Q = y$, and $R = z$. $\text{curl } \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x & y & z \end{vmatrix}$ $\text{curl } \mathbf{F} = \left( \frac{\partial}{\partial y}(z) - \frac{\partial}{\partial z}(y) \right)\mathbf{i} - \left( \frac{\partial}{\partial x}(z) - \frac{\partial}{\partial z}(x) \right)\mathbf{j} + \left( \frac{\partial}{\partial x}(y) - \frac{\partial}{\partial y}(x) \right)\mathbf{k}$ $= \left( 0 - 0 \right)\mathbf{i} - \left( 0 - 0 \right)\mathbf{j} + \left( 0 - 0 \right)\mathbf{k}$ $= 0\mathbf{i} - 0\mathbf{j} + 0\mathbf{k}$ $= \mathbf{0}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.