Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - Review Exercises - Page 863: 33

Answer

$${\bf{r}}\left( t \right) = \left( {{t^2} + 1} \right){\bf{i}} + \left( {{e^t} + 2} \right){\bf{j}} - \left( {{e^{ - t}} + 4} \right){\bf{k}}$$

Work Step by Step

$$\eqalign{ & {\bf{r}}'\left( t \right) = 2t{\bf{i}} + {e^t}{\bf{j}} + {e^{ - t}}{\bf{k}} \cr & {\text{Integrating}} \cr & {\bf{r}}\left( t \right) = \int {{\bf{r}}'\left( t \right)} dt \cr & = \left[ {\int {2tdt} } \right]{\bf{i}} + \left[ {\int {{e^t}dt} } \right]{\bf{j}} + \left[ {\int {{e^{ - t}}dt} } \right]{\bf{k}} \cr & {\bf{r}}\left( t \right) = {t^2}{\bf{i}} + {e^t}{\bf{j}} - {e^{ - t}}{\bf{k}} + {\bf{C}} \cr & {\text{Using the fact that }}{\bf{r}}\left( 0 \right) = {\bf{i}} + 3{\bf{j}} - 5{\bf{k}} \cr & {\bf{r}}\left( 0 \right) = {\left( 0 \right)^2}{\bf{i}} + {e^0}{\bf{j}} - {e^{ - 0}}{\bf{k}} + {\bf{C}} \cr & {\bf{r}}\left( 0 \right) = 0{\bf{i}} + {\bf{j}} - {\bf{k}} + {\bf{C}} \cr & {\bf{i}} + 3{\bf{j}} - 5{\bf{k}} = + {\bf{j}} - {\bf{k}} + {\bf{C}} \cr & {\bf{C}} = {\bf{i}} + 3{\bf{j}} - 5{\bf{k}} - {\bf{j}} + {\bf{k}} \cr & {\bf{C}} = {\bf{i}} + 2{\bf{j}} - 4{\bf{k}} \cr & {\text{Therefore,}} \cr & {\bf{r}}\left( t \right) = {t^2}{\bf{i}} + {e^t}{\bf{j}} - {e^{ - t}}{\bf{k}} + {\bf{i}} + 2{\bf{j}} - 4{\bf{k}} \cr & {\bf{r}}\left( t \right) = \left( {{t^2} + 1} \right){\bf{i}} + \left( {{e^t} + 2} \right){\bf{j}} - \left( {{e^{ - t}} + 4} \right){\bf{k}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.