Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - Review Exercises - Page 863: 20

Answer

$$21\sin t\cos t$$

Work Step by Step

$$\eqalign{ & {\bf{r}}\left( t \right) = 5\cos t{\bf{i}} + 2\sin t{\bf{j}} \cr & \left( {\text{a}} \right){\text{Calculate }}{\bf{r}}{\text{'}}\left( t \right) \cr & {\bf{r}}{\text{'}}\left( t \right) = \frac{d}{{dt}}\left[ {5\cos t} \right]{\bf{i}} + \frac{d}{{dt}}\left[ {2\sin t} \right]{\bf{j}} \cr & {\bf{r}}{\text{'}}\left( t \right) = - 5\sin t{\bf{i}} + 2\cos t{\bf{j}} \cr & \cr & \left( {\text{b}} \right){\text{Calculate }}{\bf{r}}{\text{''}}\left( t \right) \cr & {\bf{r}}{\text{''}}\left( t \right) = \frac{d}{{dt}}\left[ {{\bf{r}}{\text{'}}\left( t \right)} \right] \cr & {\bf{r}}{\text{''}}\left( t \right) = \frac{d}{{dt}}\left[ { - 5\sin t} \right]{\bf{i}} + \frac{d}{{dt}}\left[ {2\cos t} \right]{\bf{j}} \cr & {\bf{r}}{\text{''}}\left( t \right) = - 5\cos t{\bf{i}} - 2\sin t{\bf{j}} \cr & \cr & \left( {\text{c}} \right){\text{Calculate the dot product }}{\bf{r}}{\text{'}}\left( t \right) \cdot {\bf{r}}{\text{''}}\left( t \right) \cr & {\bf{r}}{\text{'}}\left( t \right) \cdot {\bf{r}}{\text{''}}\left( t \right) = \left[ { - 5\sin t{\bf{i}} + 2\cos t{\bf{j}}} \right] \cdot \left( { - 5\cos t{\bf{i}} - 2\sin t{\bf{j}}} \right) \cr & {\bf{r}}{\text{'}}\left( t \right) \cdot {\bf{r}}{\text{''}}\left( t \right) = \left( { - 5\sin t} \right)\left( { - 5\cos t} \right) + \left( {2\cos t} \right)\left( { - 2\sin t} \right) \cr & {\bf{r}}{\text{'}}\left( t \right) \cdot {\bf{r}}{\text{''}}\left( t \right) = 25\sin t\cos t - 4\sin t\cos t \cr & {\bf{r}}{\text{'}}\left( t \right) \cdot {\bf{r}}{\text{''}}\left( t \right) = 21\sin t\cos t \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.