Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - Review Exercises - Page 863: 18

Answer

$$2{\bf{i}} + {\bf{j}} + {\bf{k}}$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{t \to 0} \left( {\frac{{\sin 2t}}{t} + {e^{ - t}}{\bf{j}} + {e^t}{\bf{k}}} \right) \cr & {\text{Evaluate the limit}} \cr & {\text{As t approaches }}0,{\text{ the limit is}} \cr & {\text{ = }}\left[ {\mathop {\lim }\limits_{t \to 0} \frac{{\sin 2t}}{t}} \right]{\bf{i}} + \left[ {\mathop {\lim }\limits_{t \to 0} {e^{ - t}}} \right]{\bf{j}} + \left[ {\mathop {\lim }\limits_{t \to 0} {e^t}} \right]{\bf{k}} \cr & {\text{ = }}2\left[ {\mathop {\lim }\limits_{t \to 0} \frac{{\sin 2t}}{{2t}}} \right]{\bf{i}} + \left[ {{e^{ - 0}}} \right]{\bf{j}} + \left[ {{e^0}} \right]{\bf{k}} \cr & = 2\left( 1 \right){\bf{i}} + \left( 1 \right){\bf{j}} + \left( 1 \right){\bf{k}} \cr & = 2{\bf{i}} + {\bf{j}} + {\bf{k}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.