Answer
$$\eqalign{
& {\text{summary}} \cr
& \left( {\bf{a}} \right)4{\bf{i}} + 2t{\bf{j}} + 4t{\bf{k}} \cr
& \left( {\bf{b}} \right)2{\bf{j}} + 4{\bf{k}} \cr
& \left( {\bf{c}} \right)20t \cr
& \left( {\bf{d}} \right) - 16{\bf{j}} + 8{\bf{k}} \cr} $$
Work Step by Step
$$\eqalign{
& {\bf{r}}\left( t \right) = \left( {4t + 3} \right){\bf{i}} + {t^2}{\bf{j}} + \left( {2{t^2} + 4} \right){\bf{k}} \cr
& \left( {\bf{a}} \right){\text{Find }}{\bf{r}}'\left( t \right) \cr
& {\bf{r}}'\left( t \right) = \frac{d}{{dt}}\left[ {\left( {4t + 3} \right){\bf{i}} + {t^2}{\bf{j}} + \left( {2{t^2} + 4} \right){\bf{k}}} \right] \cr
& {\bf{r}}'\left( t \right) = 4{\bf{i}} + 2t{\bf{j}} + 4t{\bf{k}} \cr
& \cr
& \left( {\bf{b}} \right){\text{Find }}{\bf{r}}''\left( t \right) \cr
& {\bf{r}}''\left( t \right) = \frac{d}{{dt}}\left[ {4{\bf{i}} + 2t{\bf{j}} + 4t{\bf{k}}} \right] \cr
& {\bf{r}}''\left( t \right) = 0{\bf{i}} + 2{\bf{j}} + 4{\bf{k}} \cr
& \cr
& \left( {\bf{c}} \right){\text{Find }}{\bf{r}}'\left( t \right) \cdot {\bf{r}}''\left( t \right) \cr
& {\bf{r}}'\left( t \right) \cdot {\bf{r}}''\left( t \right) = \left( {4{\bf{i}} + 2t{\bf{j}} + 4t{\bf{k}}} \right) \cdot \left( {0{\bf{i}} + 2{\bf{j}} + 4{\bf{k}}} \right) \cr
& {\bf{r}}'\left( t \right) \cdot {\bf{r}}''\left( t \right) = 0 + 4t + 16t \cr
& {\bf{r}}'\left( t \right) \cdot {\bf{r}}''\left( t \right) = 20t \cr
& \cr
& \left( {\bf{d}} \right){\text{Find }}{\bf{r}}'\left( t \right) \times {\bf{r}}''\left( t \right) \cr} $$
\[\begin{gathered}
{\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right) = \left| {\begin{array}{*{20}{c}}
{\mathbf{i}}&{\mathbf{j}}&{\mathbf{k}} \\
4&{2t}&{4t} \\
0&2&4
\end{array}} \right| \hfill \\
{\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right) = \left| {\begin{array}{*{20}{c}}
{2t}&{4t} \\
2&4
\end{array}} \right|{\mathbf{i}} - \left| {\begin{array}{*{20}{c}}
4&{4t} \\
0&4
\end{array}} \right|{\mathbf{j}} + \left| {\begin{array}{*{20}{c}}
4&{2t} \\
0&2
\end{array}} \right|{\mathbf{k}} \hfill \\
{\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right) = 0{\mathbf{i}} - 16{\mathbf{j}} + 8{\mathbf{k}} \hfill \\
\end{gathered} \]