Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - Review Exercises - Page 863: 26

Answer

$$\frac{1}{3}{t^3}{\bf{i}} + \frac{5}{2}{t^2}{\bf{j}} + 2{t^4}{\bf{k}} + {\bf{C}}$$

Work Step by Step

$$\eqalign{ & \int {\left( {{t^2}{\bf{i}} + 5t{\bf{j}} + 8{t^3}{\bf{k}}} \right)} dt \cr & {\text{ By the Definition of Integration of Vector - Valued Functions}} \cr & = \left[ {\int {{t^2}dt} } \right]{\bf{i}} + \left[ {\int {5tdt} } \right]{\bf{j}} + \left[ {\int {8{t^3}dt} } \right]{\bf{k}} \cr & {\text{Integrating }} \cr & = \frac{1}{3}{t^3}{\bf{i}} + \frac{5}{2}{t^2}{\bf{j}} + 2{t^4}{\bf{k}} + {\bf{C}},{\text{ where }}{\bf{C}}{\text{ is a constant vector}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.