Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - Review Exercises - Page 863: 27

Answer

$$2{t^{3/2}}{\bf{i}} + 2\ln \left| t \right|{\bf{j}} + t{\bf{k}} + {\bf{C}}$$

Work Step by Step

$$\eqalign{ & \int {\left( {3\sqrt t {\bf{i}} + \frac{2}{t}{\bf{j}} + {\bf{k}}} \right)} dt \cr & {\text{ By the Definition of Integration of Vector - Valued Functions}} \cr & = \left[ {\int {3\sqrt t dt} } \right]{\bf{i}} + \left[ {\int {\frac{2}{t}dt} } \right]{\bf{j}} + \left[ {\int {dt} } \right]{\bf{k}} \cr & = 3\left[ {\int {{t^{1/2}}dt} } \right]{\bf{i}} + 2\left[ {\int {\frac{1}{t}dt} } \right]{\bf{j}} + \left[ {\int {dt} } \right]{\bf{k}} \cr & {\text{Integrating }} \cr & = 3\left( {\frac{{{t^{3/2}}}}{{3/2}}} \right){\bf{i}} + 2\ln \left| t \right|{\bf{j}} + t{\bf{k}} + {\bf{C}},{\text{ where }}{\bf{C}}{\text{ is a constant vector}} \cr & = 2{t^{3/2}}{\bf{i}} + 2\ln \left| t \right|{\bf{j}} + t{\bf{k}} + {\bf{C}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.