Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - Review Exercises - Page 863: 3

Answer

$$\eqalign{ & \left( {\text{a}} \right){\text{ Domain: }}\left( {0,\infty } \right) \cr & \left( {\text{b}} \right){\text{ Continuous for }}t > 0 \cr} $$

Work Step by Step

$$\eqalign{ & {\bf{r}}\left( t \right) = \ln t{\bf{i}} + t{\bf{j}} + t{\bf{k}} \cr & {\text{Let the vector function be }}{\bf{r}}\left( t \right) = f\left( t \right){\bf{i}} + g\left( t \right){\bf{j}} + h\left( t \right){\bf{k}} \cr & {\text{The component functions are:}} \cr & f\left( t \right) = \ln t,{\text{ Is continuous for }}t > 0 \cr & g\left( t \right) = t,{\text{ Is continuous for all real numbers: }}\left( { - \infty ,\infty } \right) \cr & h\left( t \right) = t,{\text{ Is continuous for all real numbers: }}\left( { - \infty ,\infty } \right) \cr & {\text{Intersecting the domains we obtain: }}\left( {0,\infty } \right) \cr & \left( {\text{a}} \right){\text{ Domain: }}\left( {0,\infty } \right) \cr & \left( {\text{b}} \right){\text{ Continuous for }}t > 0 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.