Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - 12.5 Exercises - Page 861: 57

Answer

$$\left( {\frac{\pi }{2} + n\pi ,0} \right),{\text{n is an integer}}$$

Work Step by Step

$$\eqalign{ & y = \cos x \cr & {\text{Calculate the curvature, use }}K = \frac{{\left| {y''\left( x \right)} \right|}}{{{{\left( {1 + {{\left[ {y'\left( x \right)} \right]}^2}} \right)}^{3/2}}}} \cr & {\text{Find }}y'\left( x \right){\text{ and }}y''\left( x \right),{\text{ }} \cr & y'\left( x \right) = \frac{d}{{dx}}\left[ {\cos x} \right] \cr & y'\left( x \right) = - \sin x \cr & y''\left( x \right) = \frac{d}{{dx}}\left[ { - \sin x} \right] \cr & y''\left( x \right) = - \cos x \cr & \underbrace {K = \frac{{\left| {y''\left( x \right)} \right|}}{{{{\left( {1 + {{\left[ {y'\left( x \right)} \right]}^2}} \right)}^{3/2}}}}}_ \Downarrow \cr & K = \frac{{\left| { - \cos x} \right|}}{{{{\left( {1 + {{\left[ { - \sin x} \right]}^2}} \right)}^{3/2}}}} \cr & K = \frac{{\left| { - \cos x} \right|}}{{{{\left( {1 + {{\sin }^2}x} \right)}^{3/2}}}} \cr & {\text{Find the point such that the curvature is zero}}{\text{.}} \cr & 0 = \frac{{\left| { - \cos x} \right|}}{{{{\left( {1 + {{\sin }^2}x} \right)}^{3/2}}}} \cr & \left| { - \cos x} \right| = 0 \cr & {\text{Solving }}x = \frac{\pi }{2} + n\pi \cr & y\left( {\frac{\pi }{2} + n\pi } \right) = \cos \left( {\frac{\pi }{2} + n\pi } \right) \cr & y\left( {\frac{\pi }{2} + n\pi } \right) = 0 \cr & {\text{The curvature is zero at the point }}\left( {\frac{\pi }{2} + n\pi ,0} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.