Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - 12.5 Exercises - Page 861: 44

Answer

$$K = \frac{3}{{16}},{\text{ }}r = \frac{{16}}{3}$$

Work Step by Step

$$\eqalign{ & y = \frac{3}{4}\sqrt {16 - {x^2}} ,{\text{ }}x = 0 \cr & {\text{Calculate the curvature, use }}K = \frac{{\left| {y''\left( x \right)} \right|}}{{{{\left( {1 + {{\left[ {y'\left( x \right)} \right]}^2}} \right)}^{3/2}}}} \cr & {\text{Find }}y'\left( x \right){\text{ and }}y''\left( x \right),{\text{ }} \cr & y'\left( x \right) = \frac{d}{{dx}}\left[ {\frac{3}{4}\sqrt {16 - {x^2}} } \right] \cr & y'\left( x \right) = \frac{3}{4}\left( {\frac{{ - 2x}}{{2\sqrt {16 - {x^2}} }}} \right) \cr & y'\left( x \right) = \frac{{ - 3x}}{{4\sqrt {16 - {x^2}} }} \cr & {\text{Evaluate at }}x = 0 \cr & y'\left( 0 \right) = 0 \cr & \cr & y''\left( x \right) = - \frac{3}{4}\frac{d}{{dx}}\left[ {\frac{x}{{\sqrt {16 - {x^2}} }}} \right] \cr & y''\left( x \right) = - \frac{3}{4}\left( {\frac{{\sqrt {16 - {x^2}} - x\left( {\frac{{ - 2x}}{{2\sqrt {16 - {x^2}} }}} \right)}}{{16 - {x^2}}}} \right) \cr & {\text{Evaluate at }}x = 0 \cr & y''\left( 0 \right) = - \frac{3}{4}\left( {\frac{{\sqrt {16} }}{{16}}} \right) \cr & y''\left( 0 \right) = - \frac{3}{{16}} \cr & \underbrace {K = \frac{{\left| {y''\left( x \right)} \right|}}{{{{\left( {1 + {{\left[ {y'\left( x \right)} \right]}^2}} \right)}^{3/2}}}}}_ \Downarrow \cr & {\text{ at }}x = 0 \cr & K = \frac{{\left| { - \frac{3}{{16}}} \right|}}{{{{\left( {1 + {{\left[ 0 \right]}^2}} \right)}^{3/2}}}} \cr & K = \frac{3}{{16}} \cr & {\text{The radius of curvature is }}r = \frac{1}{K} \cr & r = \frac{{16}}{3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.