Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - 12.5 Exercises - Page 861: 39

Answer

\[K = \frac{{7\sqrt {26} }}{{676}}\]

Work Step by Step

\[\begin{gathered} {\mathbf{r}}\left( t \right) = t{\mathbf{i}} + {t^2}{\mathbf{j}} + \frac{{{t^3}}}{4}{\mathbf{k}},{\text{ }}P\left( {2,4,2} \right) \hfill \\ {\text{For }}t = 2 \hfill \\ {\mathbf{r}}\left( 2 \right) = 2{\mathbf{i}} + {2^2}{\mathbf{j}} + \frac{{{2^3}}}{4}{\mathbf{k}} \hfill \\ {\mathbf{r}}\left( 2 \right) = 2{\mathbf{i}} + 4{\mathbf{j}} + 4{\mathbf{k}} \hfill \\ {\text{Then }}t = 2{\text{ at the point }}P\left( {2,4,2} \right) \hfill \\ {\text{By Theorem 12}}{\text{.8 }} \hfill \\ {\text{If }}C{\text{ is a smooth curve given by }}{\mathbf{r}}\left( t \right),{\text{ then the curvature }}K{\text{ of}} \hfill \\ C{\text{ at }}t{\text{ is }}K = \frac{{\left\| {{\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right)} \right\|}}{{{{\left\| {{\mathbf{r}}'\left( t \right)} \right\|}^3}}} \hfill \\ {\mathbf{r}}\left( t \right) = t{\mathbf{i}} + {t^2}{\mathbf{j}} + \frac{{{t^3}}}{4}{\mathbf{k}} \hfill \\ {\mathbf{r}}'\left( t \right) = {\mathbf{i}} + 2t{\mathbf{j}} + \frac{{3{t^2}}}{4}{\mathbf{k}} \hfill \\ {\mathbf{r}}''\left( t \right) = 2{\mathbf{j}} + \frac{{3t}}{2}{\mathbf{k}} \hfill \\ {\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right) = \left| {\begin{array}{*{20}{c}} {\mathbf{i}}&{\mathbf{j}}&{\mathbf{k}} \\ 1&{2t}&{\frac{{3{t^2}}}{4}} \\ 0&2&{\frac{{3t}}{2}} \end{array}} \right| \hfill \\ {\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right) = \left| {\begin{array}{*{20}{c}} {2t}&{\frac{{3{t^2}}}{4}} \\ 2&{\frac{{3t}}{2}} \end{array}} \right|{\mathbf{i}} - \left| {\begin{array}{*{20}{c}} 1&{\frac{{3{t^2}}}{4}} \\ 0&{\frac{{3t}}{2}} \end{array}} \right|{\mathbf{j}} + \left| {\begin{array}{*{20}{c}} 1&{2t} \\ 0&2 \end{array}} \right|{\mathbf{k}} \hfill \\ {\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right) = \frac{3}{2}{t^2}{\mathbf{i}} - \frac{{3t}}{2}{\mathbf{j}} + 2{\mathbf{k}} \hfill \\ \left\| {{\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right)} \right\| = \sqrt {\frac{9}{4}{t^4} + \frac{9}{4}{t^2} + 4} \hfill \\ and \hfill \\ \left\| {{\mathbf{r}}'\left( t \right)} \right\| = \left\| {{\mathbf{i}} + 2t{\mathbf{j}} + \frac{{3{t^2}}}{4}{\mathbf{k}}} \right\| \hfill \\ \left\| {{\mathbf{r}}'\left( t \right)} \right\| = \sqrt {1 + 4{t^2} + \frac{{9{t^4}}}{{16}}} \hfill \\ {\text{Therefore,}} \hfill \\ K = \frac{{\left\| {{\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right)} \right\|}}{{{{\left\| {{\mathbf{r}}'\left( t \right)} \right\|}^3}}} = \frac{{\sqrt {\frac{9}{4}{t^4} + \frac{9}{4}{t^2} + 4} }}{{{{\left( {\sqrt {1 + 4{t^2} + \frac{{9{t^4}}}{{16}}} } \right)}^3}}} \hfill \\ {\text{At }}t = 2 \hfill \\ K = \frac{{\sqrt {\frac{9}{4}{{\left( 2 \right)}^4} + \frac{9}{4}{{\left( 2 \right)}^2} + 4} }}{{{{\left( {\sqrt {1 + 4{{\left( 2 \right)}^2} + \frac{{9{{\left( 2 \right)}^4}}}{{16}}} } \right)}^3}}} = \frac{7}{{{{\left( {\sqrt {26} } \right)}^3}}} \hfill \\ K = \frac{7}{{26\sqrt {26} }} \hfill \\ {\text{Rationalizing}} \hfill \\ K = \frac{{7\sqrt {26} }}{{676}} \hfill \\ \end{gathered} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.