Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - 12.5 Exercises - Page 861: 40

Answer

\[\frac{{\sqrt 6 }}{{{{\left( {\sqrt 3 } \right)}^3}}}\]

Work Step by Step

\[\begin{gathered} {\mathbf{r}}\left( t \right) = {e^t}\cos t{\mathbf{i}} + {e^t}\sin t{\mathbf{j}} + {e^t}{\mathbf{k}},{\text{ }}P\left( {1,0,1} \right) \hfill \\ {\text{For }}t = 0 \hfill \\ {\mathbf{r}}\left( 0 \right) = {e^0}\cos \left( 0 \right){\mathbf{i}} + {e^0}\sin \left( 0 \right){\mathbf{j}} + {e^0}{\mathbf{k}} \hfill \\ {\mathbf{r}}\left( 0 \right) = {\mathbf{i}} + 0{\mathbf{j}} + {\mathbf{k}} \hfill \\ {\text{Then }}t = 0{\text{ at the point }}P\left( {1,0,1} \right) \hfill \\ {\text{By Theorem 12}}{\text{.8 }} \hfill \\ {\text{If }}C{\text{ is a smooth curve given by }}{\mathbf{r}}\left( t \right),{\text{ then the curvature }}K{\text{ of}} \hfill \\ C{\text{ at }}t{\text{ is }}K = \frac{{\left\| {{\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right)} \right\|}}{{{{\left\| {{\mathbf{r}}'\left( t \right)} \right\|}^3}}} \hfill \\ {\mathbf{r}}\left( t \right) = {e^t}\cos t{\mathbf{i}} + {e^t}\sin t{\mathbf{j}} + {e^t}{\mathbf{k}} \hfill \\ {\mathbf{r}}'\left( t \right) = \left( {{e^t}\cos t - {e^t}\sin t} \right){\mathbf{i}} + \left( {{e^t}\sin t + {e^t}\cos t} \right){\mathbf{j}} + {e^t}{\mathbf{k}} \hfill \\ {\mathbf{r}}''\left( t \right) = - 2{e^t}\sin t{\mathbf{i}} + 2{e^t}\cos t{\mathbf{j}} + {e^t}{\mathbf{k}} \hfill \\ {\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right) = \left| {\begin{array}{*{20}{c}} {\mathbf{i}}&{\mathbf{j}}&{\mathbf{k}} \\ {{e^t}\cos t - {e^t}\sin t}&{{e^t}\sin t + {e^t}\cos t}&{{e^t}} \\ { - 2{e^t}\sin t}&{2{e^t}\cos t}&{{e^t}} \end{array}} \right| \hfill \\ = \left( {\sin t - \cos t} \right){e^{2t}}{\mathbf{i}} - \left( {\sin t + \cos t} \right){e^{2t}}{\mathbf{j}} + 2{e^{2t}}{\mathbf{k}} \hfill \\ \left\| {{\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right)} \right\| = {e^{2t}}\sqrt {1 - 2\sin t\cos t + 1 + 2\sin t\cos t + 4} \hfill \\ \left\| {{\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right)} \right\| = \sqrt 6 {e^{2t}} \hfill \\ and \hfill \\ \left\| {{\mathbf{r}}'\left( t \right)} \right\| = \left\| {\left( {{e^t}\cos t - {e^t}\sin t} \right){\mathbf{i}} + \left( {{e^t}\sin t + {e^t}\cos t} \right){\mathbf{j}} + {e^t}{\mathbf{k}}} \right\| \hfill \\ \left\| {{\mathbf{r}}'\left( t \right)} \right\| = \sqrt {{e^{2t}}\left( {1 - 2\sin t\cos t} \right) + {e^{2t}}\left( {1 + 2\sin t\cos t} \right) + {e^{2t}}} \hfill \\ \left\| {{\mathbf{r}}'\left( t \right)} \right\| = {e^t}\sqrt {1 - 2\sin t\cos t + 1 + 2\sin t\cos t + 1} \hfill \\ \left\| {{\mathbf{r}}'\left( t \right)} \right\| = \sqrt 3 {e^t} \hfill \\ {\text{Therefore,}} \hfill \\ K = \frac{{\left\| {{\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right)} \right\|}}{{{{\left\| {{\mathbf{r}}'\left( t \right)} \right\|}^3}}} = \frac{{\sqrt 6 {e^{2t}}}}{{{{\left( {\sqrt 3 {e^t}} \right)}^3}}} \hfill \\ {\text{At }}t = 0 \hfill \\ K = \frac{{\sqrt 6 {e^0}}}{{{{\left( {\sqrt 3 {e^0}} \right)}^3}}} = \frac{{\sqrt 6 }}{{{{\left( {\sqrt 3 } \right)}^3}}} \hfill \\ \end{gathered} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.