Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - 12.5 Exercises - Page 861: 55

Answer

$$\left( {0,1} \right)$$

Work Step by Step

$$\eqalign{ & y = 1 - {x^3} \cr & {\text{Calculate the curvature, use }}K = \frac{{\left| {y''\left( x \right)} \right|}}{{{{\left( {1 + {{\left[ {y'\left( x \right)} \right]}^2}} \right)}^{3/2}}}} \cr & {\text{Find }}y'\left( x \right){\text{ and }}y''\left( x \right),{\text{ }} \cr & y'\left( x \right) = \frac{d}{{dx}}\left[ {1 - {x^3}} \right] \cr & y'\left( x \right) = 3{x^2} \cr & y''\left( x \right) = \frac{d}{{dx}}\left[ {3{x^2}} \right] \cr & y''\left( x \right) = 6x \cr & \underbrace {K = \frac{{\left| {y''\left( x \right)} \right|}}{{{{\left( {1 + {{\left[ {y'\left( x \right)} \right]}^2}} \right)}^{3/2}}}}}_ \Downarrow \cr & K = \frac{{\left| {6x} \right|}}{{{{\left( {1 + {{\left[ {3{x^2}} \right]}^2}} \right)}^{3/2}}}} \cr & {\text{Find the point where the curvature is zero}}{\text{.}} \cr & 0 = \frac{{\left| {6x} \right|}}{{{{\left( {1 + {{\left[ {3{x^2}} \right]}^2}} \right)}^{3/2}}}} \cr & x = 0 \cr & y\left( 0 \right) = 1 - {\left( 0 \right)^3} \cr & y\left( 0 \right) = 1 \cr & {\text{The curvature is zero at the point }}\left( {0,1} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.