Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - 12.5 Exercises - Page 861: 38

Answer

\[\frac{4}{{{{\left( {\sqrt {17} } \right)}^3}}}\]

Work Step by Step

\[\begin{gathered} {\mathbf{r}}\left( t \right) = {e^t}{\mathbf{i}} + 4t{\mathbf{j}},{\text{ }}P\left( {1,0} \right) \hfill \\ {\text{For }}t = 0 \hfill \\ {\mathbf{r}}\left( 0 \right) = {e^0}{\mathbf{i}} + 4\left( 0 \right){\mathbf{j}} \hfill \\ {\mathbf{r}}\left( 0 \right) = {\mathbf{i}} + 0{\mathbf{j}} \hfill \\ {\text{Then }}t = 0{\text{ at the point }}P\left( {1,0} \right) \hfill \\ {\text{By Theorem 12}}{\text{.8 }} \hfill \\ {\text{If }}C{\text{ is a smooth curve given by }}{\mathbf{r}}\left( t \right),{\text{ then the curvature }}K{\text{ of}} \hfill \\ C{\text{ at }}t{\text{ is }}K = \frac{{\left\| {{\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right)} \right\|}}{{{{\left\| {{\mathbf{r}}'\left( t \right)} \right\|}^3}}} \hfill \\ {\mathbf{r}}\left( t \right) = {e^t}{\mathbf{i}} + 4t{\mathbf{j}} \hfill \\ {\mathbf{r}}'\left( t \right) = {e^t}{\mathbf{i}} + 4{\mathbf{j}} \hfill \\ {\mathbf{r}}''\left( t \right) = {e^t}{\mathbf{i}} \hfill \\ {\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right) = \left| {\begin{array}{*{20}{c}} {\mathbf{i}}&{\mathbf{j}}&{\mathbf{k}} \\ {{e^t}}&4&0 \\ {{e^t}}&0&0 \end{array}} \right| \hfill \\ {\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right) = \left| {\begin{array}{*{20}{c}} 4&0 \\ 0&0 \end{array}} \right|{\mathbf{i}} - \left| {\begin{array}{*{20}{c}} {{e^t}}&0 \\ {{e^t}}&0 \end{array}} \right|{\mathbf{j}} + \left| {\begin{array}{*{20}{c}} {{e^t}}&4 \\ {{e^t}}&0 \end{array}} \right|{\mathbf{k}} \hfill \\ {\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right) = - 4{e^t}{\mathbf{k}} \hfill \\ \left\| {{\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right)} \right\| = 4{e^t} \hfill \\ and \hfill \\ \left\| {{\mathbf{r}}'\left( t \right)} \right\| = \left\| {{e^t}{\mathbf{i}} + 4{\mathbf{j}}} \right\| \hfill \\ \left\| {{\mathbf{r}}'\left( t \right)} \right\| = \sqrt {{e^{2t}} + 16} \hfill \\ {\text{Therefore,}} \hfill \\ K = \frac{{\left\| {{\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right)} \right\|}}{{{{\left\| {{\mathbf{r}}'\left( t \right)} \right\|}^3}}} = \frac{{4{e^t}}}{{{{\left( {\sqrt {{e^{2t}} + 16} } \right)}^3}}} \hfill \\ {\text{At }}t = 0 \hfill \\ K = \frac{{4{e^0}}}{{{{\left( {\sqrt {{e^0} + 16} } \right)}^3}}} = \frac{4}{{{{\left( {\sqrt {17} } \right)}^3}}} \hfill \\ \end{gathered} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.