Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - 12.5 Exercises - Page 861: 37

Answer

\[K = \frac{{12}}{{125}}\]

Work Step by Step

\[\begin{gathered} {\mathbf{r}}\left( t \right) = 3t{\mathbf{i}} + 2{t^2}{\mathbf{j}},{\text{ }}P\left( { - 3,2} \right) \hfill \\ {\text{By Theorem 12}}{\text{.8 }} \hfill \\ {\text{If }}C{\text{ is a smooth curve given by }}{\mathbf{r}}\left( t \right),{\text{ then the curvature }}K{\text{ of}} \hfill \\ C{\text{ at }}t{\text{ is }}K = \frac{{\left\| {{\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right)} \right\|}}{{{{\left\| {{\mathbf{r}}'\left( t \right)} \right\|}^3}}} \hfill \\ {\mathbf{r}}\left( t \right) = 3t{\mathbf{i}} + 2{t^2}{\mathbf{j}} \hfill \\ {\mathbf{r}}'\left( t \right) = 3{\mathbf{i}} + 4t{\mathbf{j}} \hfill \\ {\mathbf{r}}''\left( t \right) = 4{\mathbf{j}} \hfill \\ {\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right) = \left| {\begin{array}{*{20}{c}} {\mathbf{i}}&{\mathbf{j}}&{\mathbf{k}} \\ 3&4&0 \\ 0&4&0 \end{array}} \right| \hfill \\ {\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right) = \left| {\begin{array}{*{20}{c}} 4&0 \\ 4&0 \end{array}} \right|{\mathbf{i}} - \left| {\begin{array}{*{20}{c}} 3&0 \\ 0&0 \end{array}} \right|{\mathbf{j}} + \left| {\begin{array}{*{20}{c}} 3&4 \\ 0&4 \end{array}} \right|{\mathbf{k}} \hfill \\ {\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right) = 12{\mathbf{k}} \hfill \\ \left\| {{\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right)} \right\| = 12 \hfill \\ and \hfill \\ \left\| {{\mathbf{r}}'\left( t \right)} \right\| = \left\| {3{\mathbf{i}} + 4t{\mathbf{j}}} \right\| \hfill \\ \left\| {{\mathbf{r}}'\left( t \right)} \right\| = \sqrt {{{\left( 3 \right)}^2} + {{\left( 4 \right)}^2}} \hfill \\ \left\| {{\mathbf{r}}'\left( t \right)} \right\| = 5 \hfill \\ {\text{Therefore,}} \hfill \\ K = \frac{{\left\| {{\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right)} \right\|}}{{{{\left\| {{\mathbf{r}}'\left( t \right)} \right\|}^3}}} = \frac{{12}}{{{{\left( 5 \right)}^3}}} \hfill \\ K = \frac{{12}}{{125}} \hfill \\ {\text{The curvature is constant, so at the point }}P\left( { - 3,2} \right),{\text{ the}} \hfill \\ {\text{curvature is }}\frac{{12}}{{125}} \hfill \\ \end{gathered} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.